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Two-body problem

Consider at first  two-body problem with the total Hamiltonian H and 

asymptotic Hamiltonian H0 (may include the Coulomb interaction). 

The short-range interaction:

0V H H 

has a finite trace.

Resolvents of the Hamiltonians are taken in the following form:

   
1 1

0 0( ) ( 0) ,   ( ) ( 0)R E H E i R E H E i
 

     



Different ways to solve the scattering problem

Schroedinger equation (differential): Lippmann-Schwinger equation (integral):

( ) ( )

( )

( , )  ( , )

                          ( ) ( , )

r
E r h E r

S E h E r

  





 



( ) ( )( ) ( )H E E E  

Matching with asymptotical wf:

( ) ( ) ( )

0 0( ) ( ) ( ) ( )E E R E V E     

S-matrix is defined from the matrix element
(integral) with exact scattering wave function:

( )

0

( ) 1 2 ( )

( ) ( ) ( )

S E iT E

T E E V E



  

 



S(E) is related to the scattering operator:
( )† ( )S    

( ) ( )

0( ) ( )E E   

S(E) – scattering matrix element
which is related to observables. 

( ) exp(2 ( )),S E i E

One can also solve the equation for the T-
matrix itself.
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Wave operators:

( )

0 2

2 2 2
( ) sin( ),    ( ) sin( ),   i

r

mE
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   

In the simplest case:
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' 'det || || 0nn nnH EI  

This results in a  generalized eigenvalue problem for the Hamiltonian matrix:

L2 discretization: expansion in some basis

Let’s expand the wave function over a finite set of L2 functions                  
(forms a basis at N→∞) :                

 0 , 1, ,jE j N

 , 1, ,jE j N

 
1

N

n n




' ' ' ',   nn n n nn n nH H I    

Discrete sets of energies:

for the asymptotic Hamiltonian H0

for the total Hamiltonian H=H0 +V

The positive eigenvalues (Ej > 0) define the discretized continuum.  The corresponding 
eigenfunctions have finite norms and usually are called as pseudostates of the 
continuum.

5

Consider the Schroedinger equation for the wave function:

Examples: - Harmonic oscillator representation,
- bi-orthogonal Laguerre basis,
- Gaussian basis and others.

     1 n n  



L2 discretization: problem ‘in a box’ (finite volume) 

A similar situation arises when solving scattering problem in a box (spherical cavity): 

0 a r

0 ( ) 0

( ) 0

a

a









Conditions for the wave functions:

The asymptotic and total Hamiltonians 
have  discrete but infinite spectra:

   0 , , 1, ,j jE E j 

Examples: - Problems in finite volume, 
- QCD lattice calculations (Lüscher approach)

and others.  

Wave-functions are L2 normalized as well. 
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Spectral shift function

The spectral shift function corresponds to a pair of operators H0 and H=H0+V:

the trace formula (I.M. Lifshits 1952) 0Tr ( ) ( )  ( ) ( )f H f H dE f E E




  

The Birman-Krein equation (1962). Relation to the S-operator:

det ( ) exp( 2 ( ))S E i E  

In one-channel case, SSF is proportional to the phase shift:

1
( ) ( )E E 


 
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Spectral shift function for a model 
Hamiltonian with 3 bound states

The SSF is also defined in the area of discrete 
spectrum. It takes integer values there: 

M.Sh. Birman, A.B. Pushnitsky, Spectral shift 
function, amazing and multifaceted,                                               
Integr. equ. oper. theory 30, 191 (1998). 

1

( ) ( ),   0
bN

n

n

E E E E 


   

So that, the phase shift satisfies the Levinson theorem. 



Continuum level density

On can introduce the continuum level density:

Relation to the SSF (and phase shift ):

The SSF can be considered as integrated continuum level density:

Spectral density for a Hamiltonian with  discrete spectrum:

 
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( ) Tr ( ) ( )
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For continuous spectrum spectral density does not exist.
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†1 1
( ) Tr ( ) ( ) ln det ( )

2 2

d d
E S E S E S E

i dE i dE 

 
   

 

Chaos: classical and quantum (chaosbook.org)

Continuum level  density

The Krein-Fridel-Lloyd equation:

(E) is widely used to find the resonance parameters:
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An interesting treatment of the spectral density and continuum level density can 
be found in the on-line book: 

A. T. Kruppa and K. Arai, Phys. Rev. A 59, 3556 (1999).

The trace equation:

 0Tr ( ) ( ) ( )  ( ) ( )
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n
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Spectral density for the discretized continuum

For discretized spectrum, the separate spectral densities can be defined:

Integrated densities of states (IDS):

One should construct smooth 
functions instead of the step-like 

ones: J(E)→X(E).

 0

0

1

( )
N

d j

j

E E E 


 

     0 0

0 0 0

1

( ') ' ,   

E N
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j

J E E dE E E J E j 
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1

,   
N

j j

j

J E E E J E j


  

they do not contain any 
information about scattering. 

IDS for the problem 
in a finite volume 

J(E)

X(E)

If we consider directly the differences: 

for H 
1

( )
N

d j

j

E E E 


 for H0 and  

 
0

0

( ) ( )  ( )

( ) ( )  ( ) 

d dE E E

J E J E E

 



  

  
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Difference of X(E) and X0(E) gives 
the SSF (and the phase shift) as  
continuous functions on energy:

0

jE

kE

0

jE

 

 
0

0

( ) ( ) ( )

( ) ( ) ( )

E X E X E

E X E X E



 

  

 
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Dependence of EVs on the index of state The inverse function

The similar function X(E) is defined for 
the spectrum of the total Hamiltonian.



Quasi-continuous spectrum

For the initial Hamiltonian H0 with continuous spectrum, one considers a family of 
operators H0(a) with  discrete spectra:

(I.M. Lifshits, 1947)

0( ) ( )

0 0

( ) 0( ) 0( ) 0
1

( ) ( ) ( ),   

( )
( )

j

j j j

u j

E j j O

d u
D E E O

du

a a

a a a

a

 a  a a


a a



  

 
    

  

- eigenvalues belong to some smooth 
monotonous function;

- one may consider a limit  a → 0.

The respective family of total Hamiltonians H(a)=H0(a)+V with EVs:
( ) ( ) ( )jE ja a a

Relation for EVs of  H(a) and H0(a) (I.M. Lifshits):

( ) 0( ) ( )0 ( )
,    j j j

u j

d u
E E

du

a a a

a


a 



  ( ) ( )   j jEa 

(a is a small parameter)
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If combine the r.h.s.:

the spectral shift function

 ( ) ( ) ( )

0( )j jE j ja a a a  a     

An interaction causes a shift of EV along the same curve! Here  j can be considered as 
a non-integer shift of the index of state.

One can define smooth integrated densities  X0  and X as inverse functions:
1

( ) ( )

0 0( ) ( )  ,X E Ea aa 


   

1
( ) ( )( ) ( )X E Ea aa 



   

 ( ) ( ) ( )

0( ) ( ) ( )E X E X Ea a a   
( )( ) ( ) ( )E E Oa  a 



The spectral shift function: and the phase shift:

Spectral densities

 0( ) ( ) ( )E X E X E     0( ) ( ) ( )E X E X E  

One can also define separate spectral densities:

The functions X,X0 and ,0do not correspond to initial spectra and do not have finite 
limits when a→ 0. 

However, the limits for the differences, the functions  and , do exist. 

0
0

( ) ( )
( ) ,           ( ) ,  

dX E dX E
E E

dE dE
  

0 ( )( )
 ( )

dX EdX E
E

dE dE
  and the CLD as the difference:

13O.A.R., V.N.P., J. Phys. A 55, 095301 (2022).



The properties of  functions X and X0

At the points of the total Hamiltonian’s spectrum, the phase shifts are 
defined by the function X0 only!

 0( ) ( ) ( )E X E X E  

0( ) ( ),    1,j j bE j X E j N     ( )jX E j
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0 0( ) ( ) 1k

k

dX E dE x k

dE dx D


 

  
 

By using an expansion of X0 at the point          which is closest to        and
0

kE jE

0

( ) ( )
k j

j

k

E E
E j k

D
  


  
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Approximation via the relative difference of EVs for the free and total Hamiltonian: 

Numerical examples: O.A.R. et al., Phys. Rev. C 81, 064003 (2010) 



Case of a complex-valued potential

 0
Im

Im
j

j

j

E
E

D
  

0

0( )    
j j

j

j

E E
E

D
 


  

Calculation in the 
harmonic oscillator 
basis

N=10

N=40

N=100
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Complex non-local potential of Perey and Buck for neutron-nucleus scattering

filled circles - results for local phase-equivalent potentials

     , ' ' 'nAV U W   r r r r r r

Calculation in the stationary wave-packet basis.



s s

 

Differential cross sections for neutron-nucleus scattering

with non-local optical potential of Perey and Buck

Only a single diagonalisation procedure for each partial wave is required to get the cross 
sections in wide energy region.



aa scattering

‘exact’

via the spectral shifts

2

0 0

4
,   S

e
H H V H

r
  

s-wave partial phase shifts



Cases when X0 is known explicitly
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Scattering problem in a finite volume

Discrete spectrum of the free Hamiltonian:

Integrated density of states (inverse):

The phase shift at energies En:

From the boundary condition:

0 a r

The small parameter: 1
~

a
a

 1

20

( ) ( ) 2 ,   1,...a

n n bE n a mE n n    



hl depends on interaction. It can be found by using the R-matrix method.

hard sphere phase shift

The charged particle scattering can be considered similarly: 

0 a r

Scattering problem in a finite volume

For l > 0

1 ( )
( ) tan

( )

l
l

l

F ka
E

G ka
 
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J-matrix approach 

 0 0( ) ( ) ( )     ( ) ( )n nE X E X E E n X E        

The SS-HORSE method (A.M. Shirokov et al., Phys. Rev. Lett. 117, 182502 (2016)). 
At energies equal to EVs of the total Hamiltonian matrix, the phase shift has the 
simple expression: 

The function X(E) can be also calculated in the HORSE method at any energy.

Hnn’

N

N
H0

nn’

Matrix of the asymptotic Hamiltonian has a tri-diagonal (Jacobi) 
form. 
Examples: the kinetic energy operator in the Harmonic Oscillator 

representation,   
the Coulomb Hamiltonian in bi-orthogonal Laguerre basis. 

Function fNl does not depend on interaction.

Integrated density:
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At real energies near the resonance:

2 2

1 / 2
( ) ( )

( ) / 4
bg

R

E E
E E


  

 

1
( ) arctan ( )

/ 2

R
bg

E E
E E 




  



Both functions, the continuum level density and the spectral shift function, 
can be used to find a resonance parameters.

This leads to the following parametrization of the integrated spectral density:

 0

1
( ) arctan ( )     ( ) ( ) ( )

/ 2

R
bg

E E
X E X E E X E X E




   





Calculations in the Gaussian basis
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Gaussian basis

Radial functions:

Below we use the Tchebyshev grid:

2( ) exp( ),   1, ,l

j jl jr A r r j N   

0( ),   tan ,   1, ,
1 2

t

j N j

j
g j j N

N


  

  
      

Eigenvalue problems for H0 and H:

' 'det || || 0nn nnH EI    0

1

N

j j
E


 

1

N

j j
E



Scale parameters j can be chosen:  the basis becomes complete at N→∞

1

| |
N

n n n k nk

n

C I  


  , 

This basis is very convenient for approximation of  bound states and few-body 
calculations.  

Problems with approximation of continuum:
- sparse discretized spectrum;
- a non-orthogonal system – at rather moderate dimension it becomes 

numerically linear dependent.
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Union of  discretized spectra

The eigenvalues (found from M 
eigenvalue problems) have the similar 
property - dependence on common 

index x:

Scale parameters:

Consider a set of M bases with shifted scale parameters:

This imitates continuous dependence:

m=1

m=2

0( ),   tan
1 2

t

j N j

j
g j

N


  

  
      

 
1

1 , 1, , ,   0  1
M

m

j N m mm
g j a j N a


       

( ) ( ),   0Nx g x x N   

0

0( ),   1m

j mE x x j a a   

1
~

1N
a



t=3, N=20, M=5

Let’s construct discretized spectra corresponding to the same density of states X0(E). 
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( to be compared with                             )

Non-integer indices

Thus one can construct the ISD as follows:

The integrated density of states 
reconstructed from 20 Gaussian bases 

The same procedure for the spectrum of H:

 ( ) 0

0

1, ,
1,   

1, ,

N m

j m

j N
X E j a

m M


  



 ( ) 0

0

N

jX E j

 ( ) 1N m

k mX E k a  

   ( ) ( )

01 ,   1 ,   1N m N m

k m kE k a X E k N m M          
 

The generalized relation for the phase shift:

non-integer value
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Numerical examples

atomic units

N=10

N=20

N=35

There is one bound state, and two resonances for this potential.

0 0,     H T H H V   (Csoto et al., PRA 1990) 

orbital momentum L=0

Direct solution 
of Schroedinger
eq.
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p+12C scattering

Unperturbed Hamiltonian includes Coulomb interaction:

Short-range nuclear potential:

N=10

N=15

N=20

R-matrix

There is a forbidden state.

L=0

P. Descouvemont, 

D. Baye, 2010
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2 ( )
  

Rx x

dE x

dx 

 
2

( ) / 2
  

cos ( )R

dE x

dx x x









For the narrow resonance

At real energies near the resonance 
position, E(x) has a ‘plato’ similarly to the 
stabilization approach of Hazi and Taylor.

One can find the parameters of the 
resonance from the integrated density X(E) 
for the total Hamiltonian:

30

1
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R
bg

E E
X E X E




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dXdX E

dE dE
»



Multi-channel problem

' 0 ' ' ,   , ' 1, ,vH H V K      Total Hamiltonian:

In this case, still there is one spectral shift function:

a sum of eigen phase shifts

31

For this problem we employ the multichannel Gaussian set (forms a basis at N→∞): 

2

1{ ( ) exp( ) ( ),   1, , }
l K

jl m jl j l mA r r Y j N

    

  

    r r

The spectrum is degenerated. At each energy E, there are K independent solutions.
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†

2

0

( )

0 K

i

i

e

E

e





 
 

  
 
 

S U UThe S-matrix elements:

1

1
det ( ) exp( 2 ( )),    ( )

K

k

k

E i E E   
 

    S



‘Statistical’ treatment of the united spectrum
Here  we recover the integrated and spectral densities of states  as numbers of the states 
below and near energy E correspondingly.

Let’s divide the  spectrum into intervals   Ei and consider the values:

Ni – number of states in an interval

32

In case of the union, the above values should be divided by the number of spectra M:

We have considered two types of such a treatment: 
- intervals with a fixed number of states N,
- intervals with a fixed energy E.
Both methods result in the same spectral and integrated densities.
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Two-channel model problem

2

2

0 2

2

1
0

2

1
0 15

2

d

dr
H

d

dr

 
 
 
 

  
 

2 2

2 2

0.5

2

15 5
( )

5 15( 1)

r r

r r

e re
V r

re r r e

 

 

 
  
   

Integrated density for the asymptotic 
Hamiltonian is a sum of integrated 
densities for simple spectra:

The numerical reconstruction of 
X0(E) with different multiplicity 
of union M. 

M=1

M=2

M=10

exact sum



Sum of the phase shifts

After calculation of the integrated densities for the total and 
asymptotic Hamiltonians X(E) and X0(E), one can found the sum of the phase 
shifts:

 0

1

( ) ( ) ( )
K

i

i

E X E X E 


 

34

Sum of the eigenphases for the 
model two-channel problem
found from unions with M=160
of Gaussian sets with 
dimensions: 

N1=N2=22

N1=N2=30

solution of Srchoed.eq.

There two resonances for such a problem. The second resonance is above the 
threshold of the second channel.
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Results of the fitting procedure

X(E)

fit

Finding the resonance parameters

Parameters of the second resonance:

1
( ) arctan ( )

/ 2

R
bg

E E
X E X E




 



The resonance term is present in the 
density of the total Hamiltonian. 
So that, one may try to fit only one 
integrated density:
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A problem with tensor coupling in the interaction 

The sum of the eigen phase shifts 
for the coupled 3S1 − 3D1 channels 
found using M=80 Gaussian bases: 

black curve - N1 = N2 = 10 
blue curve N1 = N2 = 30 
red curve - from a solution

of the coupled Lippmann-
Schwinger equations 

dots - the SAID PWA  data 

The realistic model for NN interaction 
taking into account an additional non-
nucleonic channel (with the dibaryon
state).

3S1+
3D1

phase shifts



37

Three-body problem



Three-body problem
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One has to consider five Hamiltonians in three-body case:

H – the total Hamiltonian; 

H0 – the free Hamiltonian (kinetic energy operator);

Hi = H0+Vi (i=1,2,3) – three channel Hamiltonians

3

0

1

i

i

H H V


 

Total Hamiltonian:

   

 

1 1

0 0

1

( ) ( 0) ,   ( ) ( 0)

( ) ( 0)i i

R E H E i R E H E i

R E H E i

 



     

  

1

2

3

1

2

3



Three-body problem

39

The trace equation (Buslaev, Merkuriev 1970, the third virial coefficient):

 
3

0 0

1

1
Tr ( ) ( ) ( ) ( ) ( )  ( ) ( )

th

i b

i b E

f H f H f H f H f E dE E f E






 
      

 
  

Three-body spectral function:
3

0 0

1

( ) Tr Im ( ) Im ( ) (Im ( ) Im ( ))i

i

E R E R E R E R E


 
     

 


One may consider a three-body analog of the spectral shift function as an integral:

3

1
( ) ' ( ' ) ( ')

E

b

b

E dE E E E 




 
     

 


One has to prove that this function exists.
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Three-body integrated spectral function

 
3

3 0 0

1

( ) ( ) ( ) ( ) ( )i

i

E X E X E X E X E


 
     

 


If the above three-body spectral function exists it should be represented as the difference 
of integrated densities for Hamiltonians in a case of continuum discretization:  

In a case, when there is two-body bound state in only one subsystem {23}, 
below the three-body breakup threshold (E=0), only two terms contribute to the difference:

This should correspond to the sum of the eigen phase shifts of the total Hamiltonian 
similarly  to the two-body case.

In area of three-body discrete spectrum 3(E) should be a step-like function similarly to SSF:

3( ) ( ),    <b th

b

E E E E E   

3 1

1
( ) ( ) 'Tr[Im ( ') Im ( ')],   0

th

E

b

b E

E E E dE R E R E E 


      

 
3

3 0 0

1

1
( ) ' ( ' ) Tr Im ( ') Im ( ') Im ( ') Im ( ')

E

b i

b i

E dE E E R E R E R E R E 
 

  
        

  
 

This means that the corresponding difference should not depend on the basis dimension and
should have a finite limit with increasing it to infinity.  



aNN system in the three-cluster model

Consider a three-body model for a-n-p system. Below the three-body breakup threshold, 
the spectrum of the total Hamiltonian is simple. Thus one can employ a similar treatment 
as in two-body case. 

Three-body Gaussian set:

The total Hamiltonian:

n

p 2 2 2

21 31

2
( ) ( ) ( )

2 2
r p n np

p

e
H V r V r V r

M r
 a a


        
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( , ) ( , ) ( , ),   ( )JM JMr F lLS 


     r ρ r ρ

2 2

1 1

( , ) exp( )

NN
l

ij i j

i j

r C r r
a

   

   a  
 

   radial parts: 

angular part: 

The channel 3+0



a - d scattering below three-body beakup threshold

For the configuration 3+0 one may calculate the partial a-d phase shift 3D3 as

the difference of spectral densities for the total and asymptotic Hamiltonians.
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Here a variation of the basis 
parameters over relative np 
distance r has been 
employed to construct the 
union of M spectra. 

M=10

M=30

PWA data

The parameters for 6Li(3+0) has been found as well:

The experimental values: ER=-1.514 MeV, =24 keV.



Resonance above three-body breakup threshold

The united spectrum for each Hamiltonian is constructed by varying parameters over

both Jacobi variables r and .

p

p

2 2 2 2 2

31 21

31 21

2 2
( ) ( ) ( )

2 2
r p p pp

e e e
H V r V r V r

M r r r
 a a


          

16

6Be is considered as a three-body system a+p+p:

One of asymptotic Hamiltonians:
2 2 2 2 2

1

31 21

2 2
( )

2 2
r pp

e e e
H V r

M r r r



        

X(E)

X1(E)

The resonance is clearly seen in the 
difference of integrated densities

0+1

N fixed

E fixed
1

8
0

[X
(E

)-
X

1
(E

)]
  

(d
eg

)
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Resonance 0+1

Experimental values: 
ER=1.371 MeV,  92 keV

The resonance parameters has been 
found from the difference X(E)-X0(E) 
and from a single density X(E). Both 
results are very close.

The taken partial configurations:

Dependence on the basis dimension:

X(E)

X(E)-X1(E)

1
( ) arctan ( )

/ 2

R
bg

E E
X E X E




 



X(E)

fit

The found parameters for 6Be(1+0) :

ER = 1.379 ± 0.001 MeV,  = 79.8 ± 0.5 keV
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Test of the integrated spectral function for ann system 



Conclusions
We have discussed the formalism with continuous spectral densities and integrated 
densities for solving problems in continuum. 

Integrated spectral densities are quite suitable for studying discretized spectrum within 
different L2 approaches.

We have demonstrated the efficiency of the method for finding the resonance
parameters for the three-body problem with three charged particles as well.
The formalism with the three-body spectral function needs in further mathematical
justification.

Important applications:
- study of two-proton radioactivity;
- study of existence of the three-neutron resonance for different modern models of

NN interaction.
Three-body spectral function can be used for new treatment of the virial expansion.
The method with union of disretized spectra may be generalized for solving the scattering
equations.
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Спектральная плотность

Плотность состояний для дискретного 

спектра

( ) ( )n

n

E E E  

Можно записать формальное равенство

  1

0 0

1 1 1
( ) lim Im   ( ) limImTrn

n

E E E E i H
E E i 
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  



 
       

 

( ) ,   ( ) ( )n

n

dN
E N E E E

dE
   

Спектральная плотность может быть представлена как производная от счетной функции

Chaos: classical and quantum (chaosbook.org)
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Union of the discretized spectra
Radial functions of the Gaussian set depend on set of parameters :

The parameters j are given on some 
mesh (the set is complete (forms a basis) 

in a limit N →∞): 

0 ,   1, ,
1

j

j
g j N

N
 

 
  

 
0( ) ,   1, ,

1
j j a

j a
a g j N

N
  

 
   

 

   
1 1

( )
N N

j a jj j
E a   



Additional sets of the parameters are 
introduced by shifting the index (0≤a<1):

( ),    ( ) ( ).j jE E j E a E j a  

It has been shown that the corresponding eigenvalues 
are shifted along the same curve:

This property allows to reconstruct 
a continuous dependence E(x) and 
integrated density X(E) for a simple 
spectrum.
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Thus, the set of indices

0 ≤a1 ≤… ≤ am ≤… ≤ aM<1   
generates a union of eigenvalues

E(j-am) (see the Fig.)

N = 15 - initial set

M = 20 - union multiplicity

NxM = 300 - number of EVs

O.A. R., V.N.P., J.Phys. A 55, 095301 (2022).
V.N.P., O.A.R., Phys. At. Nucl. 85, 1087 (2022). 

2( ) exp( ),   1, ,l

j jl jr A r r j N   



Narrow two-channel resonance

2

( ) / 2
  

cos ( )R

dE x

dx x x









ER=4.768 a.u.

=0.0014 a.u.

(V.A. Mandelshtam et al.: ER=4.768 a.u.

=0.00142 a.u. )
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2
1.0 7.5

7.5 7.5

rV r e
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  
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Thresholds E1=0, E2=0.1 a.u.

(Noro, Taylor, 1980)


