Nucleon pairing energy in even-even nuclei

<u>F.M. Pen'kov</u>^{1),2)}, T.K. Joldybayev^{1),2)},
 <u>P.M. Krassovitskiy²</u>) and, V. O. Kurmangalieva¹)
 ¹⁾ Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
 ²⁾Institute of Nuclear Physics, 050032 Almaty, Kazakhstan

According to the publication Pen'kov F.M., Zholdybayev T.K., Krassovitskiy P.M., Kurmangalieva V.O. Isotriplet pairing energy of nucleons in nuclei // Results in Physics. – 2023. – V.52. – 106856. https://doi.org/110.1016/j.rinp.2023.106856

and a little bit more

Motivation

- How the pair interaction of nucleons in nuclei differs from that of free nucleons, at least for valence nucleons, remains an open question
- Do dineutron and diproton clustering exist in atomic nuclei?

Approach criterion

The proximity of experimental and calculated nucleon pairing energies.

Pairing energy E_{nn} and E_{pp} Definition:

$$E_{nn} = E_{b,N+2} - E_{b,N+1};$$

$$E_{pp} = E_{b,Z+2} - E_{b,Z+1};$$

$$E_{b,N} = c^2 (M(Z, N - 1) + m_n - M(Z, N));$$

$$E_{b,Z} = c^2 (M(Z - 1, N) + m_p - M(Z, N)).$$

Experimental E_{nn} and E_{pp}

• Experimental data from

"Nuclear Wallet Cards database version of 5/16/2019" https://www.nndc.bnl.gov/nudat3/indx_sigma.jsp

• Example

Pairing energy for ${}^{10}_{6}C$ comprises 7.02 MeV, while the pairing energy for ${}^{224}_{92}U$ is 3.8 times less and is equal to 1.83 MeV. If you use energy of a nuclear quantum $\hbar\omega = \frac{41}{\frac{1}{4^3}} MeV$, then $E_{nn}/\hbar\omega$ for ${}^{10}_{6}C$ is 0.371, and that for

 $^{224}_{92}U$ is **0.270**

Fig.1. Experimental energies of *nn*-pairing. Filled squares – even Z, filled circles – odd Z. Fig.2. Experimental pp-pairing energies. Filled squares – even N, filled circles – odd N.

Experimental E_{nn} and E_{pp}

Nuclei	$\overline{E}_{nn}/\hbar\omega$	$\overline{E}_{pp}/\hbar \omega$
even	0.248 ± 0.005	0.232 ± 0.004
odd	0.176 ± 0.009	0.163 ± 0.008

Model

Hamiltonian H_1 for a nucleon with mass m

$$H_{1} = -\frac{1}{2m}\Delta + \frac{m\omega^{2}}{2}r^{2}, \quad E_{1} = \omega\left(\frac{3}{2} + l + 2n\right):$$

$$n = 0, 1, 2, \dots$$

Two non-interacting nucleons must have the energy

$$E_2 = \omega(3 + 2l + 4n), \qquad n = 0, 1, 2, \dots$$

The Hamiltonian of two non-interacting particles with coordinates r_1 and r_2 in an oscillator well can be written in terms of the coordinates of the center of inertia of the pair $R = \frac{1}{2}(r_1 + r_2)$ and the coordinates of the relative motion $r = r_2 - r_1$ in the form:

Model

$$\begin{split} H_2^0 &= -\frac{1}{m} \Delta_r - \frac{1}{4m} \Delta_R + \frac{m\omega^2 r^2}{4} + m\omega^2 R^2 = H_r^0 + H_R^0;\\ H_r^0 &= -\frac{1}{m} \Delta_r + \frac{m\omega^2 r^2}{4}; \ E_r^0 = \omega \left(\frac{3}{2} + l_r + 2n_r\right);\\ H_R^0 &= -\frac{1}{4m} \Delta_R + m\omega^2 R^2; \ E_R^0 = \omega \left(\frac{3}{2} + l_R + 2n_R\right),\\ E_2 &= 2E_1 = \omega(3 + 2l + 4n) = E_r^0 + E_R^0 = \omega(3 + l_r + l_R + 2n_r + 2n_R),\\ l_r &= 0; \ l_R = 0, n_R = 0 => 2l + 4n = 2n_r =>\\ E_r^0 &= \omega \left(\frac{3}{2} + 2(l + 2n)\right)! \end{split}$$

The value of l+2n is determined by the quantum numbers of motion of ONE nucleon

Model

The inclusion of the S-wave pair interaction allows us to write the radial Schrödinger equation for relative motion in the form:

$$-\frac{1}{m}\frac{1}{r^2}\frac{d}{dr}r^2\frac{d}{dr}\Psi + \frac{m\omega^2r^2}{4}\Psi + V\Psi = E_r^{in}\Psi$$

V is the potential of nucleon-nucleon interaction

$$E_{nn} = E_r^0 - E_r^{in}.$$

NN-potential

Yamaguchi's separable potential was chosen as a realistic nucleon-nucleon interaction model. In momentum representation, this potential takes the form

$$V(p,p') = v(p)v(p') = -\frac{8\pi}{m} \frac{\beta(\beta + \kappa)^2}{(\beta^2 + p^2)(\beta^2 + p'^2)}$$

Yamaguchi potential in the configuration space also
has a separable form

$$V(r,r') = v(r)v(r') = -\frac{\beta(\beta+\kappa)^2}{2\pi m} \frac{e^{-\beta r}}{r} \frac{e^{-\beta r'}}{r'}$$

NN-potential

For separable potentials

$$\widehat{V}\Psi = \nu(r) \int \nu(r')\Psi(r')d^3r' = \nu(r)C$$

Scattering parameters with the Yamaguchi potential give

$$a_2 = \frac{2(\beta + \kappa)^2}{\kappa(2\beta + \kappa)\beta}, \qquad r_{eff} = \frac{(\beta + \kappa)^2 + 2\beta^2}{\beta(\beta + \kappa)^2}.$$

Below, we use the accepted average values

	<i>a</i> ₂ (fm)	r_{eff} (fm)
T = 1, S = 0	-18.5 <u>+</u> 0.3	2.75 <u>+</u> 0.11
T = 0, S = 1	5.424 ± 0.003	1.760 ± 0.005

Equation solutions

Let's introduce regular F and irregular G solutions for the harmonic oscillator equation with energy E and oscillatory length $x_0^2 = \frac{2}{m(x)}$: $F = e^{-\frac{r^2}{2x_0^2}} rM\left(\frac{3\omega - 2E}{4\omega}, \frac{3}{2}, \frac{r^2}{x_0^2}\right),$ $G = e^{-\frac{r^2}{2x_0^2}} r U\left(\frac{3\omega - 2E}{4\omega}, \frac{3}{2}, \frac{r^2}{x_0^2}\right),$

in terms of Kummer's functions M(a, b, z) and function U(a, b, z)

Equation solutions

We write down the solution of Eq. in the form: $r\Psi \propto \frac{C}{W} \left[\int_0^r dr' \, e^{-\beta r'} \, G(r) F(r') + \int_r^{\infty} dr' e^{-\beta r'} \, F(r) G(r') \right].$ In spectral points, at $E = E_r^{in}$, defined by the equation:

$$1 = \frac{4\beta(\beta + \kappa)^2}{W} \int_0^\infty dr \, e^{-\beta r} G(r) \int_0^r dr' \, e^{-\beta r'} F(r')$$

Here $W = F'G - G'F$.

Remarks

After repeated integration by parts, we obtain a simplified form of the spectral equation

$$\frac{G'(0)}{G(0)} = -\frac{\kappa(2\beta + \kappa)\beta}{2(\beta + \kappa)^2} + \frac{3}{2\beta}K^2 + O((\beta x_0)^{-2});$$

$$K^2 = mE.$$

And at $\beta x_0 \rightarrow \infty$

$$\frac{\Gamma\left(\frac{3}{4} - \frac{E_r^{in}}{2\omega}\right)}{\Gamma\left(\frac{1}{4} - \frac{E_r^{in}}{2\omega}\right)} \frac{2}{x_0} = \frac{1}{a_2}$$

Results

Zero range interactions ($\beta x_0 \rightarrow \infty$)

 $\frac{E_{nn}}{\omega} \approx 1$ $\frac{E_{pn}}{\omega} \approx 1$

Zero range interactions does not describe the nucleon pairing energy in the model under consideration

Results Potential of Yamaguchi

Fig. 3. Experimental and calculated energies of *nn*-pairing

Fig. 4. Experimental and calculated energies of *pp*-pairing

Results Potential of Yamaguchi

Nucleon	Experiment	Calculation	Calculation
pairing			without the
energy			Coulomb
			repulsion
\overline{E}_{nn}/ω	0.248 ± 0.005	0.217 ± 0.013	
\overline{E}_{pp}/ω	0.232 ± 0.004	0.195 ± 0.013	0.234 ± 0.013

Nobel laureate Maria Goeppert Mayer – «Think of a room full of waltzers. ... all the dancers are spinning twirling round and round like tops as they circle the room, each pair both twirling and circling».

A simplified view of MGM pairing

Pairings for T=1 (*nn*, *pp*). Consequence of the present model.

There is no clustering of pairs. In fact, the mean square distance between nucleons in an interacting pair differs from that in a pair without interaction by less than 1%.

Pairings for T=0 (np). Consequence of the present model.

There should be clustering. But from the chain of equalities $2l + 2n_r + 2n_R = 2l + 4n$ $n_r + n_R = 2n$ follows that $E_r^0 = \omega(3/2 + 2(2n - n_R)),$ $n_R = ???$

Pairings for T=0 (np). Consequence of the present model.

For example, for nuclei 10B, 14N and 18F, with experimental energies of *pn*-pairing: 0.356, 0.330, 0.320, calculations with $n_R = 1$ give 0.364, 0.336, 0.305. Similar, but n_R looks like a fitting parameter

Conclusions

- The description of the pairing energy in the presented model is quite adequate.
- But the next step requires solving the problem of pairing nucleons in a potential that does not allow the separation of the pair's center of mass.
- For example, in the Woods–Saxon potential.

The problem becomes four-dimensional!

Thank you for attention