TWO-BODY LATTICE HAMILTONIANS WITH FIRST AND SECOND NEAREST-NEIGHBORING-SITE INTERACTIONS*[∗]*

Alexander K. Motovilov

Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna

The IVth International School and Workshop on Few-Body Systems 30 September 2024, Khabarovsk

*[∗]*Based on a joint work with **S. Lakaev** and **S.Abdukhakimov** of Samarkand University.

Motivation and problem setup 2 2

In this presentation, our main object of study is a TWO-particle system on a TWO-dimensional (2D) lattice. But to make the introduction easier and softer, we start with an example of a one-particle system on a 1-dimensional lattice.

LATTICE SIMPLEST EXAMPLE: One-dimensional lattice $\iff \mathbb{Z} = \{..., -2, -1, 0, 1, 2...\}$ the set of entire numbers. Hilbert space:

$$
l_2 = l_2(\mathbb{Z}) = \left\{ \widehat{f} : \mathbb{Z} \to \mathbb{C} \; \middle| \; \sum_{n=-\infty}^{\infty} |\widehat{f}(n)|^2 < \infty \right\}
$$

Kinetic energy operator of a particle on the 1D-lattice $\mathbb Z$ is simply the second finite difference operator (up to a constant):

$$
(\widehat{H}_0 f)(n) := -\frac{1}{2}\widehat{f}(n-1) - \frac{1}{2}\widehat{f}(n+1) + \widehat{f}(n).
$$

Plus potential, say, a local operator

$$
(\widehat{V}\widehat{f})(n) := \widehat{V}(n)\widehat{f}(n), \quad n \in \mathbb{Z}
$$

where \widehat{V} is a (decreasing as $|n| \to \infty$) real-valued function on \mathbb{Z} .

In (quasi)momentum space: Perform the Fourier transform $\mathcal{F}: l_2(\mathbb{Z}) \to L_2(\mathbb{T})$,

$$
f(p) = (\mathcal{F}\widehat{f})(p) := \frac{1}{\sqrt{2\pi}} \sum_{n=-\infty}^{\infty} e^{ipn} \widehat{f}(n), \quad p \in [-\pi, \pi] =: \mathbb{T}, \quad f \in L_2(\mathbb{T}).
$$

Then H_0 transforms into

$$
(H_0f)(p) = (1 - \cos p)f(p).
$$

This implies that the spectrum of H_0 (and, hence, the spectrum of \widehat{H}_0) is purely absolutely continuous and fills the interval

$$
\sigma(H_0) = [\min_{p \in \mathbb{T}} (1 - \cos p), \max_{p \in \mathbb{T}} (1 - \cos p)] = [0, 2].
$$

A lot of things is known on the one-particle 1D-Hamiltonians (there is a scattering theory, see say, [Yafaev 2017]). Particular case of Jacobi matrices/operators. [Belyaev, Sandhas, AM 1997] used to explain enhancement of molecular-nuclear transitions due new-threshold resonances.

N-body ($N \geq 1$) problems on lattices: setup and a review in [Mattis 1986]. Including lattice dimensions up to 3 and even more. Since 1980s, a major contribution due to S.Lakaev and his students in Samarkand $+$ coworkers from other cities/countries.

Interest to the few-body lattice problems is motivated, in paticular, by:

- \bullet Few-body lattice Hamiltonian may be viewed as a MINIMALIST version of the corresponding Bose- or Fermi-Hubbard model involving a fixed finite number of particles of a certain type.
- \bullet These hamiltonians represent a natural approximation for their continuous counterparts allowing to study few-body phenomena in the context of the theory of BOUNDED operators.
- \bullet The simplest and natural model for description of few-body systems formed by particles traveling through PERIODIC structures, say, for ulracold atoms injected into optical crystals created by the interference of counter-propagating laser beams.
- \bullet EFIMOV EFFECT, originally attributed to the three-body systems moving in \mathbb{R}^3 (1969/70). Efimov effect is present in three-body systems on the three-dimensional lattice \mathbb{Z}^3 [Lakaev:1993] + [Albeverio Lakaev et al 2004, 2012].

Remark. The existence of Efimov-type phenomena:

- $-$ in a 5-boson system on a line \mathbb{R}^1 [Nishida et al 2010],
- $-$ in a 4-boson system on a plane \mathbb{R}^2 [Nishida 2017],
- $-$ for 3 spinless fermions moving on the plane \mathbb{R}^2 [Nishida et al 2013].

In the latter case, a mathematical proof is available [Gridnev 2014], [Tamura 2019], and the phenomenon acquired the name of a super Efimov effect, because of the double exponential convergence of the binding energies to the three-body threshold.

One may guess that similar phenomena take place in the lattice case. Nothing has yet been done.

Now, introduce the Hamiltonian we discuss now.

Let $\Z^2=\Z\times\Z$ be the two-dimensional lattice and $\ell^{2,a}(\Z^2\times\Z^2)\subset\ell^2(\Z^2\times\Z^2)$, the Hilbert space of square–summable antisymmetric functions:

$$
\widehat{f} \in \ell^{2,a}(\mathbb{Z}^2 \times \mathbb{Z}^2) \Longleftrightarrow \widehat{f}(y,x) = -\widehat{f}(x,y), \quad \forall x, y \in \mathbb{Z},
$$

$$
\sum_{x = -\infty}^{\infty} \sum_{y = -\infty}^{\infty} |\widehat{f}(x,y)|^2 < \infty.
$$

In the position-space, the Hamiltonian $\hat{H}_{\lambda \mu}$ for a system of two fermions with a first and second nearest-neighboring-site interaction potential $\hat{\mathbf{V}}_{\lambda\mu}$ is an operator on $\ell^{2,a}(\Z^2\times\Z^2)$ of the following form:

$$
\widehat{\mathbf{H}}_{\lambda\mu} = \widehat{\mathbf{H}}_0 + \widehat{\mathbf{V}}_{\lambda\mu}, \ \lambda, \mu \in \mathbb{R}.\tag{1}
$$

Here, $\hat{\mathbf{H}}_0$ is the kinetic energy operator of the system, defined on $\ell^{2,a}(\mathbb{Z}^2\times\mathbb{Z}^2)$ as $(-1)\times$ finite-difference Laplacian (up to a constant) in 2D, i.e. on \mathbb{Z}^2 :

$$
[\widehat{\mathbf{H}}_0\widehat{f}](x_1,x_2)=\sum_{s_1\in\mathbb{Z}^2}\widehat{\boldsymbol{\varepsilon}}(x_1-s_1)\widehat{f}(s_1,x_2)+\sum_{s_2\in\mathbb{Z}^2}\widehat{\boldsymbol{\varepsilon}}(x_2-s_2)\widehat{f}(x_1,s_2),\ \widehat{f}\in\ell^{2,a}(\mathbb{Z}^2\times\mathbb{Z}^2),\tag{2}
$$

where

$$
\widehat{\varepsilon}(s) = \begin{cases} 2, & |s| = 0, \\ -\frac{1}{2}, & |s| = 1, \\ 0, & |s| > 1, \end{cases}
$$
 (3)

 $\text{with } |s| = |s_1| + |s_2| \text{ for } s = (s_1, s_2) \in \mathbb{Z}^2.$

The first and second nearest-neighboring-site interaction potential $\widehat{\mathbf{V}}_{\lambda\mu}$ is the operator of multiplication by a function $\widehat{v}_{\lambda \mu}$,

$$
[\widehat{\mathbf{V}}_{\lambda\mu}\widehat{f}](x_1,x_2) = \widehat{v}_{\lambda\mu}(x_1-x_2)\widehat{f}(x_1,x_2), \ \widehat{f} \in \ell^{2,a}(\mathbb{Z}^2 \times \mathbb{Z}^2), \tag{4}
$$

where

$$
\widehat{v}_{\lambda\mu}(s) = \begin{cases} \frac{\lambda}{\mu}, & |s| = 1, \\ \frac{\mu}{2}, & |s| = 2, \\ 0, & s = 0 \text{ or } |s| > 2. \end{cases}
$$
 (5)

Notice that x_1 and x_2 are positions of the particles 1 and 2 on the lattice $\mathbb{Z}^2.$ All the three operators

$$
\widehat{\mathbf{H}}_{0},\ \widehat{\mathbf{V}}_{\lambda\mu},\ \text{and}\ \widehat{\mathbf{H}}_{\lambda\mu}=\widehat{\mathbf{H}}_{0}+\widehat{\mathbf{V}}_{\lambda\mu}
$$

(for $\lambda, \mu \in \mathbb{R}$) are bounded and self-adjoint.

Let $\mathbb{T}^2\equiv[-\pi,\pi]\times[-\pi,\pi]$, and let $L^{2,a}(\mathbb{T}^2\times\mathbb{T}^2)$ be the Hilbert space of square-integrable antisymmetric functions on $\mathbb{T}^2\times\mathbb{T}^2.$

The quasimomentum-space version of the Hamiltonian $\widehat{\mathbf{H}}_{\lambda\mu} = \widehat{\mathbf{H}}_0 + \widehat{\mathbf{V}}_{\lambda\mu}$ reads as

$$
\mathbf{H}_{\lambda\mu} := (\mathfrak{F} \otimes \mathfrak{F}) \widehat{\mathbf{H}}_{\lambda\mu} (\mathfrak{F} \otimes \mathfrak{F})^*,
$$

where $\mathfrak{F}\otimes\mathfrak{F}$ denotes the Fourier transform. The operator $\mathbf{H}_{\lambda\mu}$ acts on $L^{2,a}(\mathbb{T}^2\times\mathbb{T}^2)$ and has the form ${\bf H}_{\lambda\mu}={\bf H}_0+{\bf V}_{\lambda\mu}$, where ${\bf H}_0=({\mathcal F}\otimes{\mathcal F})\hat{\bf H}_0({\mathcal F}\otimes{\mathcal F})^*$ is the multiplication operator:

$$
[\mathbf{H}_0 f](p,q) = [\varepsilon(p) + \varepsilon(q)]f(p,q),
$$

with

$$
\varepsilon(p) := \sum_{i=1}^{2} (1 - \cos p_i), \quad p = (p_1, p_2) \in \mathbb{T}^2,
$$

the *dispersion relation* of a single fermion. The interaction ${\bf V}_{\lambda\mu}=({\cal F}\otimes{\cal F})\hat{\bf V}_{\lambda\mu}({\cal F}\otimes{\cal F})^*$ is the integral operator

$$
[\mathbf{V}_{\lambda\mu}f](p,q) = \frac{1}{(2\pi)^2} \int_{\mathbb{T}^2} v_{\lambda\mu}(p-u)f(u,p+q-u)du
$$

with the kernel function

$$
v_{\lambda\mu}(p) = \lambda \sum_{i=1}^{2} \cos p_i + \mu \sum_{i=1}^{2} \cos 2p_i + 2\mu \sum_{i=1}^{2} \sum_{i \neq j=1}^{2} \cos p_i \cos p_j, \quad p = (p_1, p_2) \in \mathbb{T}^2.
$$

The Floquet-Bloch decomposition of $\mathbf{H}_{\lambda\mu}$ and fiber Hamiltonians $H_{\lambda\mu}(K)$

Since $\hat{\mathbf{H}}_{\lambda\mu}$ commutes with the representation of the discrete group \mathbb{Z}^2 by shift operators on the lattice, the space $L^{2,a}(\mathbb{T}^2\times\mathbb{T}^2)$ and $\mathbf{H}_{\lambda\mu}$ admit decomposition into the von Neumann direct integral:

$$
L^{2,a}(\mathbb{T}^2 \times \mathbb{T}^2) \simeq \int_{K \in \mathbb{T}^2}^{\oplus} L^{2,o}(\mathbb{T}^2) dK \tag{6}
$$

and

$$
\mathbf{H}_{\lambda\mu} \simeq \int_{K\in\mathbb{T}^2}^{\oplus} H_{\lambda\mu}(K) \, \mathrm{d}K,\tag{7}
$$

where $L^{2,o}(\mathbb{T}^2)$ is the Hilbert space of odd functions on \mathbb{T}^2 . The fiber Hamiltonian $H_{\lambda\mu}(K),$ $K \in \mathbb{T}^2$, acting on $L^{2,o}(\mathbb{T}^2)$, is of the form

$$
H_{\lambda\mu}(K) := H_0(K) + V_{\lambda\mu},\tag{8}
$$

where $H_0(K)$ is the operator of multiplication by the function

$$
\mathcal{E}_K(p) := 2 \sum_{i=1}^2 \left(1 - \cos \frac{K_i}{2} \cos p_i \right) \tag{9}
$$

and the perturbation operator $V_{\lambda\mu}$ is given by

$$
[V_{\lambda\mu}f](s) = \frac{\lambda}{(2\pi)^2} \sum_{i=1}^2 \sin s_i \int_{\mathbb{T}^2} \sin t_i f(t) dt + \frac{\mu}{(2\pi)^2} \sum_{i=1}^2 \sin 2s_i \int_{\mathbb{T}^2} \sin 2t_i f(t) dt
$$
(10)
+ $\frac{\mu}{2\pi^2} \sum_{i=1}^2 \sum_{j=1, j\neq i}^2 \sin s_i \cos s_j \int_{\mathbb{T}^2} \sin t_i \cos t_j f(t) dt.$

Obviously, both the operators $H_0(K)$ and $V_{\lambda\mu}$ are bounded and self-adjoint. The parameter $K \in \mathbb{T}^2$ is nothing but the *two-particle center-of-mass quasimomentum* Moreover, $V_{\lambda\mu}$ is finite rank, $\dim Ran(V_{\lambda\mu}) \leq 6$ for any $\lambda, \mu \in \mathbb{R}$.

The essential spectrum of the (fiber) two-body Hamiltonians

Depending on $\lambda, \mu \in \mathbb{R}$, the rank of $V_{\lambda\mu}$ varies but never exceeds six. Hence, by Weyl's theorem, for any $K\in\mathbb{T}^2$ the essential (continuous) spectrum $\sigma_{\rm ess}(H_{\lambda\,\mu}(K))$ of $H_{\lambda\,\mu}(K)$ coincides with the spectrum of $H_0(K)$, i.e.,

$$
\sigma_{\rm ess}(H_{\lambda\mu}(K)) = \sigma(H_0(K)) = [\mathcal{E}_{\rm min}(K), \mathcal{E}_{\rm max}(K)],\tag{11}
$$

with

$$
\mathcal{E}_{\min}(K) := \min_{p \in \mathbb{T}^2} \mathcal{E}_K(p) = 2 \sum_{i=1}^2 \left(1 - \cos \frac{K_i}{2} \right) \ge \mathcal{E}_{\min}(0) = 0,
$$

$$
\mathcal{E}_{\max}(K) := \max_{p \in \mathbb{T}^2} \mathcal{E}_K(p) = 2 \sum_{i=1}^2 \left(1 + \cos \frac{K_i}{2} \right) \le \mathcal{E}_{\max}(0) = 8,
$$

where

$$
\mathcal{E}_K(p) := 2 \sum_{i=1}^2 \left(1 - \cos \frac{K_i}{2} \cos p_i \right). \tag{12}
$$

Main results

Theorem 1. *Suppose that, counting multiplicities.* $H_{\lambda\mu}(0)$ *has n eigenvalues below (resp.* above) the essential spectrum for some $\lambda\,,\mu\in\mathbb{R}.$ Then for each $K\in\mathbb{T}^2$ the operator $H_{\lambda\mu}(K)$ *has at least n eigenvalues below (resp. above) its essential spectrum, counting multiplicities.*

Denote by μ_0^\pm $_0^\pm$ and μ_1^\pm $_1^{\pm}$ the following numbers:

$$
\mu_0^{\pm} = \frac{88 - 30\pi \pm \sqrt{1044\pi^2 - 6720\pi + 10816}}{240\pi - 24\pi^2 - 512}\pi, \tag{13}
$$

and

$$
\mu_1^{\pm} = \frac{128 - 16\pi - 9\pi^2 \pm \sqrt{225\pi^4 - 1440\pi^3 + 3904\pi^2 - 10240\pi + 16384}}{120\pi - 12\pi^2 - 256}.
$$
 (14)

Note that the numerical values of μ_0^\pm $_0^\pm$ and μ_1^\pm $\frac{1}{1}$ are as follows:

$$
\mu_0^- = -5.6172..., \quad \mu_0^+ = -2.0623..., \quad \mu_1^- = -5.7523..., \quad \mu_1^+ = -2.9272...,
$$

and, hence, these numbers satisfy the relations

$$
\mu_1^- < \mu_0^- < \mu_1^+ < \mu_0^+ < 0. \tag{15}
$$

By using the numbers μ_0^+ $\frac{+}{0}$, $\mu_0^ _0^-$ and μ_1^+ μ_1^+,μ_1^- we introduce the following non-overlapping connected components of the (λ, μ) plane.

$$
C_0^- = \{ (\lambda, \mu) \in \mathbb{R}^2 : \lambda > -\frac{8(\mu - \mu_0^+) (\mu - \mu_0^-)}{(\mu - \mu_1^+) (\mu - \mu_1^-)}, \mu > \mu_1^+ \},
$$

\n
$$
C_1^- = \{ (\lambda, \mu) \in \mathbb{R}^2 : \lambda < -\frac{8(\mu - \mu_0^+) (\mu - \mu_0^-)}{(\mu - \mu_1^+) (\mu - \mu_1^-)}, \mu > \mu_1^+ \}
$$

\n
$$
\cup \{ (\lambda, \mu) \in \mathbb{R}^2 : \lambda \in \mathbb{R}, \mu = \mu_1^+ \}
$$

\n
$$
\cup \{ (\lambda, \mu) \in \mathbb{R}^2 : \lambda > -\frac{8(\mu - \mu_0^+) (\mu - \mu_0^-)}{(\mu - \mu_1^+) (\mu - \mu_1^-)}, \mu_1^- < \mu < \mu_1^+ \},
$$

\n
$$
C_2^- = \{ (\lambda, \mu) \in \mathbb{R}^2 : \lambda < -\frac{8(\mu - \mu_0^+) (\mu - \mu_0^-)}{(\mu - \mu_1^+) (\mu - \mu_1^-)}, \mu_1^- < \mu < \mu_1^+ \}
$$

\n
$$
\cup \{ (\lambda, \mu) \in \mathbb{R}^2 : \lambda \in \mathbb{R}, \mu = \mu_1^- \}
$$

\n
$$
\cup \{ (\lambda, \mu) \in \mathbb{R}^2 : \lambda > -\frac{8(\mu - \mu_0^+) (\mu - \mu_0^-)}{(\mu - \mu_1^+) (\mu - \mu_1^-)}, \mu < \mu_1^- \},
$$

\n
$$
C_3^- = \{ (\lambda, \mu) \in \mathbb{R}^2 : \lambda < -\frac{8(\mu - \mu_0^+) (\mu - \mu_0^-)}{(\mu - \mu_1^+) (\mu - \mu_1^-)}, \mu < \mu_1^- \}
$$

and

$$
C_{0}^{+} = \{(\lambda, \mu) \in \mathbb{R}^{2} : \lambda < \frac{8(\mu + \mu_{0}^{+})(\mu + \mu_{0}^{-})}{(\mu + \mu_{1}^{+})(\mu + \mu_{1}^{-})}, \mu < -\mu_{1}^{+}\},
$$
\n
$$
C_{1}^{+} = \{(\lambda, \mu) \in \mathbb{R}^{2} : \lambda > \frac{8(\mu + \mu_{0}^{+})(\mu + \mu_{0}^{-})}{(\mu + \mu_{1}^{+})(\mu + \mu_{1}^{-})}, \mu < -\mu_{1}^{+}\}
$$
\n
$$
\cup \{(\lambda, \mu) \in \mathbb{R}^{2} : \lambda \in \mathbb{R}, \mu = -\mu_{1}^{+}\}
$$
\n
$$
\cup \{(\lambda, \mu) \in \mathbb{R}^{2} : \lambda < \frac{8(\mu + \mu_{0}^{+})(\mu + \mu_{0}^{-})}{(\mu + \mu_{1}^{+})(\mu + \mu_{1}^{-})}, -\mu_{1}^{+} < \mu < -\mu_{1}^{-}\},
$$
\n
$$
C_{2}^{+} = \{(\lambda, \mu) \in \mathbb{R}^{2} : \lambda > \frac{8(\mu + \mu_{0}^{+})(\mu + \mu_{0}^{-})}{(\mu + \mu_{1}^{+})(\mu + \mu_{1}^{-})}, -\mu_{1}^{+} < \mu < -\mu_{1}^{-}\}
$$
\n
$$
\cup \{(\lambda, \mu) \in \mathbb{R}^{2} : \lambda \in \mathbb{R}, \mu = -\mu_{1}^{-}\}
$$
\n
$$
\cup \{(\lambda, \mu) \in \mathbb{R}^{2} : \lambda < \frac{8(\mu + \mu_{0}^{+})(\mu + \mu_{0}^{-})}{(\mu + \mu_{1}^{+})(\mu + \mu_{1}^{-})}, \mu > -\mu_{1}^{-}\},
$$
\n
$$
C_{3}^{+} = \{(\lambda, \mu) \in \mathbb{R}^{2} : \lambda > \frac{8(\mu + \mu_{0}^{+})(\mu + \mu_{0}^{-})}{(\mu + \mu_{1}^{+})(\mu + \mu_{1}^{-})}, \mu > -\mu_{1}^{-}\}.
$$

It turns out that in each of the above components C *−* \overline{k} , the numbe operator $H_{\lambda\mu}(0)$, lying below its essential spectrum, remains constant of the components \mathcal{C}_k^+ $\frac{+}{k}$ is a domain where the number of eigenvalues the essential spectrum (11) , does not vary. Both these facts are esta theorem.

Theorem 2. *Let* C *[−] be one of the above connected components* C *partition of the* (λ, μ) -plane. Then for any $(\lambda, \mu) \in \mathbb{C}^-$ the number $n_$ *of* $H_{\lambda\mu}(0)$ (counting multiplicities) lying below the essential spectrun constant. Analogously, let C^+ be one of the above connected compo *of the partition of the* (λ, μ) *-plane. Then for any* $(\lambda, \mu) \in \mathbb{C}^+$ *the* ϵ *igenvalues of* $H_{\lambda\mu}(0)$ *(counting multiplicities) lying above* $\sigma_{\mathrm{ess}}(H_{\lambda\mu}(0))$

Domains \mathbb{C}_n^- with fixed number of eigenvalues (equal to $2n$) below the essential (continuous) spectrum of $H_{\lambda\mu}(0)$.

Domains \mathbb{C}_n^+ with fixed number of eigenvalues (equal to $2n$) below the essential (continuous) spectrum of $H_{\lambda\mu}(0)$.

The result below concerns the number of eigenvalues of the fiber **H** various *K* and (λ, μ) .

 $\bf{Theorem 3.}$ $\emph{Let } K \in \mathbb{T}^2$ and $(\lambda,\mu) \in \mathbb{R}^2$. Then for the numbers $n_+(H_\lambda)$ *of eigenvalues of the operator* $H_{\lambda\mu}(K)$ *lying, respectively, above and belom* $\sigma_{\mathrm{ess}}\big(H_{\lambda\mu}(K)\big)$, the following two series of implications hold:

$$
(\lambda, \mu) \in \mathcal{C}_3^+ \cap \mathcal{C}_0^- \implies n_+(H_{\lambda\mu})
$$

\n
$$
(\lambda, \mu) \in \mathcal{C}_2^+ \cap \mathcal{C}_0^- \text{ or } (\lambda, \mu) \in \mathcal{C}_2^+ \cap \mathcal{C}_1^- \implies n_+(H_{\lambda\mu})
$$

\n
$$
(\lambda, \mu) \in \mathcal{C}_1^+ \cap \mathcal{C}_0^- \text{ or } (\lambda, \mu) \in \mathcal{C}_1^+ \cap \mathcal{C}_1^- \implies n_+(H_{\lambda\mu})
$$

\n
$$
(\lambda, \mu) \in \overline{\mathcal{C}_0^+} \implies n_+(H_{\lambda\mu})
$$

\n
$$
\implies n_+(H_{\lambda\mu})
$$

and

$$
(\lambda, \mu) \in \mathcal{C}_3^- \cap \mathcal{C}_0^+ \n(\lambda, \mu) \in \mathcal{C}_2^- \cap \mathcal{C}_0^+ \text{ or } (\lambda, \mu) \in \mathcal{C}_2^- \cap \mathcal{C}_1^+ \implies n_{-}(H_{\lambda\mu}) \n(\lambda, \mu) \in \mathcal{C}_1^- \cap \mathcal{C}_0^+ \text{ or } (\lambda, \mu) \in \mathcal{C}_1^- \cap \mathcal{C}_1^+ \implies n_{-}(H_{\lambda\mu}) \n(\lambda, \mu) \in \overline{\mathcal{C}_0^-} \qquad \implies n_{-}(H_{\lambda\mu})
$$

where \overline{A} *is the closure of the set* A *.*

In fact, the estimates for the numbers $n_{+}(H_{\lambda\mu}(K))$ and $n_{-}(H_{\lambda\mu}(K))$ operator $H_{\lambda\mu}(K)$ obtained in Theorem 3 are sharp.

The next theorem establishes the exact number of eigenvalues of $H_{\lambda\mu}(0)$ outside its essential spectrum.

Theorem 4. For various $\lambda, \mu \in \mathbb{R}$, the numbers and multiplicities of eigenvalues of $H_{\lambda\mu}(0)$ \bm{o} utside the set $\bm{\sigma_\text{ess}}\big(H_{\lambda\mu}(0)\big)$ are described in the following statements.

(i) For any $(\lambda, \mu) \in C_{30} = C_3^ ^{-}_{3}$ the operator $H_{\lambda\mu}(0)$ has exactly three eigenvalues $z_{1}(\lambda,\mu;0)$, $z_2(\lambda, \mu; 0)$ and $z_3(\lambda, \mu; 0)$ of multiplicity two satisfying

$$
z_1(\lambda,\mu;0) < z_2(\lambda,\mu;0) < z_3(\lambda,\mu;0) < 0.
$$
 (18)

(ii) For any $(\lambda, \mu) \in \mathcal{C}_{20} := \mathcal{C}_2^- \cap \mathcal{C}_0^+$ $_0^+$ the operator $H_{\lambda\mu}(0)$ has two eigenvalues $z_1(\lambda,\mu;0)$ and $z_2(\lambda, \mu; 0)$ *of multiplicity two satisfying*

$$
z_1(\lambda,\mu;0) < z_2(\lambda,\mu;0) < 0 \qquad (19)
$$

and it has no eigenvalues in (8*,*+∞)

- *(iii) For any* $(\lambda, \mu) \in \mathcal{C}_{21} := \mathcal{C}_2^- \cap \mathcal{C}_1^+$ $^{+}_{1}$, the operator $H_{\lambda\mu}(0)$ has two eigenvalues $z_{1}(\lambda,\mu;0)$ and *z*2(λ*,*µ; 0) *of multiplicity two in* (*−*∞ *,*0) *and it has one eigenvalue of multiplicity two in* $(8, +\infty)$.
- $f(\text{iv})$ *For any* $(\lambda, \mu) \in \mathcal{C}_{11} := \mathcal{C}_1^- \cap \mathcal{C}_1^+$ $^+_1$, the operator $H_{\lambda\mu}(0)$ has two eigenvalues $z_1(\lambda,\mu) < 0$ *and* $z_2(\lambda, \mu) > 8$ *of multiplicity two*.
- (v) *For any* $(\lambda, \mu) \in \mathcal{C}_{10} := \mathcal{C}_1^- \cap \mathcal{C}_0^+$ $_0^+$, the operator $H_{\lambda\mu}(0)$ has one eigenvalue $z(\lambda,\mu;0)$ of *multiplicity two in* (*−*∞ *,*0)*, nevertheless it has no eigenvalues in* (8*,*+∞)*.*
- *(vi) For any* $(\lambda, \mu) \in \mathcal{C}_{00} := \mathcal{C}_{0}^{-} \cap \mathcal{C}_{0}^{+}$ $_0^+$, the operator $H_{\lambda\mu}(0)$ has no eigenvalues outside of the *essential spectrum.*
- *(vii) For any* $(\lambda, \mu) \in \mathcal{C}_{01} := \mathcal{C}_{0}^{-} \cap \mathcal{C}_{1}^{+}$ $_1^+$, the operator $H_{\lambda\mu}(0)$ has one eigenvalue $z(\lambda,\mu;0)$ of *multiplicity two in* $(8, +\infty)$ *and it has no eigenvalues in* $(-\infty, 0)$ *.*
- $f(x)$ *For any* $(\lambda, \mu) \in \mathcal{C}_{02} := \mathcal{C}_{0}^{-} \cap \mathcal{C}_{2}^{+}$ $_2^+$, the operator $H_{\lambda\mu}(0)$ has two eigenvalues $z_1(\lambda,\mu;0)$ and $z_2(\lambda,\mu;0)$ *of multiplicity two satisfying*

$$
8 < z_2(\lambda,\mu;0) < z_1(\lambda,\mu;0)
$$
\n(20)

and it has no eigenvalues in (*−*∞ *,*0)*.*

- *(viii) For any* $(\lambda, \mu) \in \mathcal{C}_{12} = \mathcal{C}_1^- \cap \mathcal{C}_2^+$ $_2^+$, the operator $H_{\lambda\mu}(0)$ has one eigenvalue of multiplicity *two in* (*−*∞ *,*0) *and it has two eigenvalues z*1(λ*,*µ; 0) *and z*2(λ*,*µ; 0) *of multiplicity two in* $(8, +\infty)$.
	- *(x) For any* $(\lambda, \mu) \in \mathcal{C}_{03} := \mathcal{C}_3^+$ $^+_3$, the operator $H_{\lambda\mu}(0)$ has exactly three eigenvalues $z_1(\lambda,\mu;0)$, $z_2(\lambda, \mu; 0)$ and $z_3(\lambda, \mu; 0)$ of multiplicity two satisfying

$$
8 < z3(\lambda, \mu; 0) < z2(\lambda, \mu; 0) < z1(\lambda, \mu; 0).
$$
\n(21)

Partition of the (λ,μ) -plane of parameters $\lambda,\mu\in\mathbb{R}$ in the connected components $\mathcal{C}_{\alpha\beta},\alpha,\beta=0,1,2,3$. These components are tagged by the symbols $N_-|N_+$ formed of the numbers $N_- := n_-(H_{\lambda,\mu}(0))$ and $N_+ := n_+(H_{\lambda,\mu}(0))$ of eigenvalues of $H_{\lambda\mu}(0)$ lying below and above the essential spectrum, resp.

Reference:

S.N. Lakaev, A.K. Motovilov, and S.Kh.Abdukhakimov, Two-fermion i *first and second nearest-neighboring-site interactions*, J. Phys. A: Ma 315202 [23 pages];arXiv:2303.10491.