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2Motivation and problem setup

In this presentation, our main object of study is a TWO-particle system on a TWO-dimensional

(2D) lattice. But to make the introduction easier and softer, we start with an example of a

one-particle system on a 1-dimensional lattice.

LATTICE SIMPLEST EXAMPLE: One-dimensional lattice ⇐⇒ Z = {. . . ,−2,−1,0,1,2 . . .},
the set of entire numbers. Hilbert space:

l2 = l2(Z) =

{
f̂ : Z→ C

∣∣∣∣∣ ∞

∑
n=−∞

| f̂ (n)|2 < ∞

}

Kinetic energy operator of a particle on the 1D-lattice Z is simply the second finite difference

operator (up to a constant):

(Ĥ0 f )(n) :=−1
2

f̂ (n−1)− 1
2

f̂ (n+1)+ f̂ (n).

Plus potential, say, a local operator

(V̂ f̂ )(n) := V̂ (n) f̂ (n), n ∈ Z

where V̂ is a (decreasing as |n| → ∞) real-valued function on Z.
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In (quasi)momentum space: Perform the Fourier transform F : l2(Z)→ L2(T),

f (p) = (F f̂ )(p) :=
1√
2π

∞

∑
n=−∞

eipn f̂ (n), p ∈ [−π,π] =: T, f ∈ L2(T).

Then H0 transforms into (
H0 f

)
(p) = (1− cos p) f (p).

This implies that the spectrum of H0 (and, hence, the spectrum of Ĥ0) is purely absolutely

continuous and fills the interval

σ(H0) = [min
p∈T

(1− cos p),max
p∈T

(1− cos p)] = [0,2].

A lot of things is known on the one-particle 1D-Hamiltonians (there is a scattering theory, see

say, [Yafaev 2017]). Particular case of Jacobi matrices/operators. [Belyaev, Sandhas, AM 1997]

used to explain enhancement of molecular-nuclear transitions due new-threshold resonances.

N-body (N ≥ 1) problems on lattices: setup and a review in [Mattis 1986]. Including lattice

dimensions up to 3 and even more. Since 1980s, a major contribution due to S.Lakaev and his

students in Samarkand + coworkers from other cities/countries.
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Interest to the few-body lattice problems is motivated, in paticular, by:

� Few-body lattice Hamiltonian may be viewed as a MINIMALIST version of the corresponding

Bose- or Fermi-Hubbard model involving a fixed finite number of particles of a certain type.

� These hamiltonians represent a natural approximation for their continuous counterparts

allowing to study few-body phenomena in the context of the theory of BOUNDED operators.

� The simplest and natural model for description of few-body systems formed by particles

traveling through PERIODIC structures, say, for ulracold atoms injected into optical crystals

created by the interference of counter-propagating laser beams.

� EFIMOV EFFECT, originally attributed to the three-body systems moving in R3 (1969/70).

Efimov effect is present in three-body systems on the three-dimensional lattice Z3 [Lakaev:1993]

+ [Albeverio Lakaev et al 2004, 2012].
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Remark. The existence of Efimov-type phenomena:

– in a 5-boson system on a line R1 [Nishida et al 2010],

– in a 4-boson system on a plane R2 [Nishida 2017],

– for 3 spinless fermions moving on the plane R2 [Nishida et al 2013].

In the latter case, a mathematical proof is available [Gridnev 2014], [Tamura 2019], and

the phenomenon acquired the name of a super Efimov effect, because of the double

exponential convergence of the binding energies to the three-body threshold.

One may guess that similar phenomena take place in the lattice case. Nothing has yet been

done.
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Now, introduce the Hamiltonian we discuss now.

Let Z2 = Z×Z be the two-dimensional lattice and ℓ2,a(Z2 ×Z2) ⊂ ℓ2(Z2 ×Z2), the Hilbert

space of square–summable antisymmetric functions:

f̂ ∈ ℓ2,a(Z2×Z2)⇐⇒ f̂ (y,x) =− f̂ (x,y), ∀x,y ∈ Z,
∞

∑
x=−∞

∞

∑
y=−∞

| f̂ (x,y)|2 < ∞.

In the position-space, the Hamiltonian Ĥλ µ for a system of two fermions with a first and

second nearest-neighboring-site interaction potential V̂λ µ is an operator on ℓ2,a(Z2×Z2) of the

following form:

Ĥλ µ = Ĥ0+ V̂λ µ, λ ,µ ∈ R. (1)
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Here, Ĥ0 is the kinetic energy operator of the system, defined on ℓ2,a(Z2 ×Z2) as (−1)×
finite-difference Laplacian (up to a constant) in 2D, i.e. on Z2:

[Ĥ0 f̂ ](x1,x2) = ∑
s1∈Z2

ε̂(x1− s1) f̂ (s1,x2)+ ∑
s2∈Z2

ε̂(x2− s2) f̂ (x1,s2), f̂ ∈ ℓ2,a(Z2×Z2), (2)

where

ε̂(s) =


2, |s|= 0,
−1

2, |s|= 1,
0, |s|> 1,

(3)

with |s|= |s1|+ |s2| for s = (s1,s2) ∈ Z2.
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The first and second nearest-neighboring-site interaction potential V̂λ µ is the operator of mul-

tiplication by a function v̂λ µ ,

[V̂λ µ f̂ ](x1,x2) = v̂λ µ(x1− x2) f̂ (x1,x2), f̂ ∈ ℓ2,a(Z2×Z2), (4)

where

v̂λ µ(s) =


λ
2 , |s|= 1,
µ
2 , |s|= 2,
0, s = 0 or |s|> 2.

(5)

Notice that x1 and x2 are positions of the particles 1 and 2 on the lattice Z2.

All the three operators

Ĥ0, V̂λ µ , and Ĥλ µ = Ĥ0+ V̂λ µ

(for λ ,µ ∈ R) are bounded and self-adjoint.

Let T2 ≡ [−π,π]× [−π,π], and let L2,a(T2 ×T2) be the Hilbert space of square-integrable

antisymmetric functions on T2×T2.
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The quasimomentum-space version of the Hamiltonian Ĥλ µ = Ĥ0+ V̂λ µ reads as

Hλ µ := (F⊗F)Ĥλ µ(F⊗F)∗,

where F⊗F denotes the Fourier transform. The operator Hλ µ acts on L2,a(T2×T2) and has

the form Hλ µ = H0+Vλ µ , where H0 = (F⊗F)Ĥ0(F⊗F)∗ is the multiplication operator:

[H0 f ](p,q) = [ε(p)+ ε(q)] f (p,q),

with

ε(p) :=
2

∑
i=1

(
1− cos pi), p = (p1, p2) ∈ T2,

the dispersion relation of a single fermion. The interaction Vλ µ = (F⊗F)V̂λ µ(F⊗F)∗ is the

integral operator

[Vλ µ f ](p,q) =
1

(2π)2

∫
T2

vλ µ(p−u) f (u, p+q−u)du

with the kernel function

vλ µ(p) = λ
2

∑
i=1

cos pi+µ
2

∑
i=1

cos2pi+2µ
2

∑
i=1

2

∑
i̸= j=1

cos pi cos p j, p = (p1, p2) ∈ T2.
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The Floquet-Bloch decomposition of Hλ µ and fiber Hamiltonians Hλ µ(K)

Since Ĥλ µ commutes with the representation of the discrete group Z2 by shift operators on the

lattice, the space L2,a(T2 ×T2) and Hλ µ admit decomposition into the von Neumann direct

integral:

L2,a(T2×T2)≃
∫ ⊕

K∈T2
L2,o(T2)dK (6)

and

Hλ µ ≃
∫ ⊕

K∈T2
Hλ µ(K)dK, (7)

where L2,o(T2) is the Hilbert space of odd functions on T2. The fiber Hamiltonian Hλ µ(K),

K ∈ T2, acting on L2,o(T2), is of the form

Hλ µ(K) := H0(K)+Vλ µ, (8)

where H0(K) is the operator of multiplication by the function

EK(p) := 2
2

∑
i=1

(
1− cos Ki

2 cos pi

)
(9)
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and the perturbation operator Vλ µ is given by

[Vλ µ f ](s) =
λ

(2π)2

2

∑
i=1

sinsi

∫
T2

sin ti f (t)dt +
µ

(2π)2

2

∑
i=1

sin2si

∫
T2

sin2ti f (t)dt (10)

+
µ

2π2

2

∑
i=1

2

∑
j=1, j ̸=i

sinsi coss j

∫
T2

sin ti cos t j f (t)dt.

Obviously, both the operators H0(K) and Vλ µ are bounded and self-adjoint. The parameter

K ∈ T2 is nothing but the two-particle center-of-mass quasimomentum

Moreover, Vλ µ is finite rank, dimRan(Vλ µ)≤ 6 for any λ ,µ ∈ R.
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The essential spectrum of the (fiber) two-body Hamiltonians

Depending on λ ,µ ∈R, the rank of Vλ µ varies but never exceeds six. Hence, by Weyl’s theorem,

for any K ∈ T2 the essential (continuous) spectrum σess(Hλ µ(K)) of Hλ µ(K) coincides with

the spectrum of H0(K), i.e.,

σess(Hλ µ(K)) = σ(H0(K)) = [Emin(K),Emax(K)], (11)

with

Emin(K) :=min
p∈T2

EK(p) = 2
2

∑
i=1

(
1− cos Ki

2

)
≥ Emin(0) = 0,

Emax(K) :=max
p∈T2

EK(p) = 2
2

∑
i=1

(
1+ cos Ki

2

)
≤ Emax(0) = 8,

where

EK(p) := 2
2

∑
i=1

(
1− cos Ki

2 cos pi

)
. (12)
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Main results

Theorem 1. Suppose that, counting multiplicities. Hλ µ(0) has n eigenvalues below (resp.

above) the essential spectrum for some λ ,µ ∈ R. Then for each K ∈ T2 the operator Hλ µ(K)

has at least n eigenvalues below (resp. above) its essential spectrum, counting multiplicities.

Denote by µ±
0 and µ±

1 the following numbers:

µ±
0 =

88−30π ±
√

1044π2−6720π +10816
240π −24π2−512

π, (13)

and

µ±
1 =

128−16π −9π2±
√

225π4−1440π3+3904π2−10240π +16384
120π −12π2−256

. (14)

Note that the numerical values of µ±
0 and µ±

1 are as follows:

µ−
0 =−5.6172..., µ+

0 =−2.0623..., µ−
1 =−5.7523..., µ+

1 =−2.9272...,

and, hence, these numbers satisfy the relations

µ−
1 < µ−

0 < µ+
1 < µ+

0 < 0. (15)
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By using the numbers µ+
0 ,µ

−
0 and µ+

1 ,µ
−
1 we introduce the following non-overlapping connected

components of the (λ ,µ) plane.

C−
0 = {(λ ,µ) ∈ R2 : λ >−8(µ −µ+

0 )(µ −µ−
0 )

(µ −µ+
1 )(µ −µ−

1 )
, µ > µ+

1 },

C−
1 = {(λ ,µ) ∈ R2 : λ <−8(µ −µ+

0 )(µ −µ−
0 )

(µ −µ+
1 )(µ −µ−

1 )
, µ > µ+

1 }

∪{(λ ,µ) ∈ R2 : λ ∈ R, µ = µ+
1 }

∪{(λ ,µ) ∈ R2 : λ >−8(µ −µ+
0 )(µ −µ−

0 )

(µ −µ+
1 )(µ −µ−

1 )
, µ−

1 < µ < µ+
1 },

C−
2 = {(λ ,µ) ∈ R2 : λ <−8(µ −µ+

0 )(µ −µ−
0 )

(µ −µ+
1 )(µ −µ−

1 )
, µ−

1 < µ < µ+
1 }

∪{(λ ,µ) ∈ R2 : λ ∈ R, µ = µ−
1 }

∪{(λ ,µ) ∈ R2 : λ >−8(µ −µ+
0 )(µ −µ−

0 )

(µ −µ+
1 )(µ −µ−

1 )
, µ < µ−

1 },

C−
3 = {(λ ,µ) ∈ R2 : λ <−8(µ −µ+

0 )(µ −µ−
0 )

(µ −µ+
1 )(µ −µ−

1 )
, µ < µ−

1 }
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and

C+
0 = {(λ ,µ) ∈ R2 : λ <

8(µ +µ+
0 )(µ +µ−

0 )

(µ +µ+
1 )(µ +µ−

1 )
, µ <−µ+

1 },

C+
1 = {(λ ,µ) ∈ R2 : λ >

8(µ +µ+
0 )(µ +µ−

0 )

(µ +µ+
1 )(µ +µ−

1 )
, µ <−µ+

1 }

∪{(λ ,µ) ∈ R2 : λ ∈ R, µ =−µ+
1 }

∪{(λ ,µ) ∈ R2 : λ <
8(µ +µ+

0 )(µ +µ−
0 )

(µ +µ+
1 )(µ +µ−

1 )
, −µ+

1 < µ <−µ−
1 },

C+
2 = {(λ ,µ) ∈ R2 : λ >

8(µ +µ+
0 )(µ +µ−

0 )

(µ +µ+
1 )(µ +µ−

1 )
, −µ+

1 < µ <−µ−
1 }

∪{(λ ,µ) ∈ R2 : λ ∈ R, µ =−µ−
1 }

∪{(λ ,µ) ∈ R2 : λ <
8(µ +µ+

0 )(µ +µ−
0 )

(µ +µ+
1 )(µ +µ−

1 )
, µ >−µ−

1 },

C+
3 = {(λ ,µ) ∈ R2 : λ >

8(µ +µ+
0 )(µ +µ−

0 )

(µ +µ+
1 )(µ +µ−

1 )
, µ >−µ−

1 }.
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It turns out that in each of the above components C−
k , the number of eigenvalues of the

operator Hλ µ(0), lying below its essential spectrum, remains constant. In a similar way, any

of the components C+
k is a domain where the number of eigenvalues of Hλ µ(0), lying above

the essential spectrum (11), does not vary. Both these facts are established in the following

theorem.

Theorem 2. Let C− be one of the above connected components C−
k , k = 0,1,2,3, of the

partition of the (λ ,µ)-plane. Then for any (λ ,µ)∈ C− the number n−(Hλ µ(0)) of eigenvalues
of Hλ µ(0) (counting multiplicities) lying below the essential spectrum σess

(
Hλ µ(0)

)
remains

constant. Analogously, let C+ be one of the above connected components C+
k , k = 0,1,2,3,

of the partition of the (λ ,µ)-plane. Then for any (λ ,µ) ∈ C+ the number n+(Hλ µ(0)) of

eigenvalues of Hλ µ(0) (counting multiplicities) lying above σess
(
Hλ µ(0)

)
remains constant.



17

Domains C−
n with fixed number of eigenvalues (equal to 2n) below the essential (continuous) spectrum of Hλ µ(0).
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Domains C+
n with fixed number of eigenvalues (equal to 2n) below the essential (continuous) spectrum of Hλ µ(0).
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The result below concerns the number of eigenvalues of the fiber Hamiltonian Hλ µ(K) for

various K and (λ ,µ).

Theorem 3. Let K ∈T2 and (λ ,µ)∈R2. Then for the numbers n+(Hλ µ(K)) and n−(Hλ µ(K))

of eigenvalues of the operator Hλ µ(K) lying, respectively, above and below its essential spectrum

σess
(
Hλ µ(K)

)
, the following two series of implications hold:

(λ ,µ) ∈ C+
3 ∩C−

0 =⇒ n+(Hλ µ(K)) = 6,
(λ ,µ) ∈ C+

2 ∩C−
0 or(λ ,µ) ∈ C+

2 ∩C−
1 =⇒ n+(Hλ µ(K))≥ 4,

(λ ,µ) ∈ C+
1 ∩C−

0 or(λ ,µ) ∈ C+
1 ∩C−

1 =⇒ n+(Hλ µ(K))≥ 2,

(λ ,µ) ∈ C+
0 =⇒ n+(Hλ µ(K))≥ 0,

(16)

and
(λ ,µ) ∈ C−

3 ∩C+
0 =⇒ n−(Hλ µ(K)) = 6,

(λ ,µ) ∈ C−
2 ∩C+

0 or(λ ,µ) ∈ C−
2 ∩C+

1 =⇒ n−(Hλ µ(K))≥ 4,
(λ ,µ) ∈ C−

1 ∩C+
0 or(λ ,µ) ∈ C−

1 ∩C+
1 =⇒ n−(Hλ µ(K))≥ 2,

(λ ,µ) ∈ C−
0 =⇒ n−(Hλ µ(K))≥ 0,

(17)

where A is the closure of the set A.

In fact, the estimates for the numbers n+(Hλ µ(K)) and n−(Hλ µ(K)) of eigenvalues of the

operator Hλ µ(K) obtained in Theorem 3 are sharp.
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The next theorem establishes the exact number of eigenvalues of Hλ µ(0) outside its essential

spectrum.

Theorem 4. For various λ ,µ ∈ R, the numbers and multiplicities of eigenvalues of Hλ µ(0)
outside the set σess

(
Hλ µ(0)

)
are described in the following statements.

(i) For any (λ ,µ) ∈ C30 = C−
3 the operator Hλ µ(0) has exactly three eigenvalues z1(λ ,µ;0),

z2(λ ,µ;0) and z3(λ ,µ;0) of multiplicity two satisfying

z1(λ ,µ;0)< z2(λ ,µ;0)< z3(λ ,µ;0)< 0. (18)

(ii) For any (λ ,µ) ∈ C20 := C−
2 ∩C+

0 the operator Hλ µ(0) has two eigenvalues z1(λ ,µ;0) and
z2(λ ,µ;0) of multiplicity two satisfying

z1(λ ,µ;0)< z2(λ ,µ;0)< 0 (19)

and it has no eigenvalues in (8,+∞)

(iii) For any (λ ,µ) ∈ C21 := C−
2 ∩C+

1 , the operator Hλ µ(0) has two eigenvalues z1(λ ,µ;0) and
z2(λ ,µ;0) of multiplicity two in (−∞,0) and it has one eigenvalue of multiplicity two in

(8,+∞).

(iv) For any (λ ,µ) ∈ C11 := C−
1 ∩C+

1 , the operator Hλ µ(0) has two eigenvalues z1(λ ,µ) < 0
and z2(λ ,µ)> 8 of multiplicity two .
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(v) For any (λ ,µ) ∈ C10 := C−
1 ∩C+

0 , the operator Hλ µ(0) has one eigenvalue z(λ ,µ;0) of

multiplicity two in (−∞,0), nevertheless it has no eigenvalues in (8,+∞).

(vi) For any (λ ,µ) ∈ C00 := C−
0 ∩C+

0 , the operator Hλ µ(0) has no eigenvalues outside of the

essential spectrum.

(vii) For any (λ ,µ) ∈ C01 := C−
0 ∩C+

1 , the operator Hλ µ(0) has one eigenvalue z(λ ,µ;0) of

multiplicity two in (8,+∞) and it has no eigenvalues in (−∞,0).

(ix) For any (λ ,µ) ∈ C02 := C−
0 ∩C+

2 , the operator Hλ µ(0) has two eigenvalues z1(λ ,µ;0) and
z2(λ ,µ;0) of multiplicity two satisfying

8 < z2(λ ,µ;0)< z1(λ ,µ;0) (20)

and it has no eigenvalues in (−∞,0).

(viii) For any (λ ,µ) ∈ C12 = C−
1 ∩C+

2 , the operator Hλ µ(0) has one eigenvalue of multiplicity

two in (−∞,0) and it has two eigenvalues z1(λ ,µ;0) and z2(λ ,µ;0) of multiplicity two in

(8,+∞).

(x) For any (λ ,µ) ∈ C03 := C+
3 , the operator Hλ µ(0) has exactly three eigenvalues z1(λ ,µ;0),

z2(λ ,µ;0) and z3(λ ,µ;0) of multiplicity two satisfying

8 < z3(λ ,µ;0)< z2(λ ,µ;0)< z1(λ ,µ;0). (21)
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Partition of the (λ ,µ)-plane of parameters λ ,µ ∈ R in the connected components Cαβ ,α,β = 0,1,2,3. These

components are tagged by the symbols N−|N+ formed of the numbers N− := n−(Hλ ,µ(0)) and N+ := n+(Hλ ,µ(0))

of eigenvalues of Hλ µ(0) lying below and above the essential spectrum, resp.
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The End


