Экспериментальные исследования малонуклонных систем

Сергей Сидорчук

Школа FBS Хабаровск, 29 сентября - 4 октября 2024

Production of secondary beams

1. Radioactive beam production

Charge exchange; One nucleon removal/pickup;

 $A_z \rightarrow A_{z\pm 1}, A_z \rightarrow A\pm 1_{z\pm 1}$ Fragmentation; Multinucleon removal; $A_z \rightarrow A-n_{z-m}$

2. Reactions with secondary beams

Neutron transfer; $A_z \rightarrow A+2_z$ Proton knockout; $A_z \rightarrow A-1_{z-1}$

Complex FAIR

Primary Beams: U400M cyclotron

In-flight separation of secondary beams

RIB*	Intensity, pps (at 1 pμA)	Energy, MeV/A
⁶ He	4x10 ⁷	22
⁶ He	1x10 ⁷	13
⁸ He	8x10 ⁴	23
¹¹ Li	7x10 ³	33
¹⁴ Be	2x10 ³	35
¹⁵ B	4x10 ⁵	32

Beyond the drip-line. Simple example: ²H(t,p)⁴H

4Fr

Система регистрации в экспериментах по изучению ^{4,5}Н.

Beyond the drip-line. Simple example: ²H(t,p)⁴H

4**]**[

- Not everything we observe is what we are looking for;
- A process at one edge of phase space also contributes at the opposite edge;
- Observed spectra are distorted, because detection system acceptance is limited.

Beyond the drip-line. More complex case – one neutron more: ${}^{3}H(t,p){}^{5}H$ \cdot 1 kCi T₂;

Why tritium?

5**F**[

- Required excess of neutrons 2 neutrons can be transferred;
- Energy of separation of two neutrons from triton (~ 8.4 MeV) is the minimum possible;
- Recoil is a proton which can be detected in a low-background kinematic range where it is emitted in the angular range close to 180° in respect to the beam direction.

- Liquid (T~25 K): h=0.4 mm; Gas: h=4 mm;
- Three stages of radiation protection;
- Radiation safety control;
- Automatic control and parameter setting;
- The cell can also be filled with H_2 , D_2 , ³He, ⁴He.

p-t-n coincidences

Optical Time Projection Chamber

M. Ćwiok et al., IEEE TNS, 52 (2005) 2895 K. Miernik et al., NIM A581 (2007) 194

Gallery of 2p events

¹⁹Mg: decay in flight experiment

- Idea of decay-in-flight experiment (GSI S271):
 I. Mukha and G. Schrieder, NPA 690 (2001) 280c.
- Structure and decays of ¹⁹Mg:
 - L. Grigorenko, I. Mukha, M. Zhukov, NPA 713 (2003) 372.
- Dependence of the predicted lifetime on the structure.
- "Belt" of posible lifetimes defined by calculations with pure configuration

Спасибо!

Рассеяние на связанной α-частице в реакции ⁴He(⁶He,2α)2*n*

Идентификация КСР по 7 независимым кинематическим и структурным параметрам:

- Продольный и поперечный импульсы спектатора;
- Относительные энергии двух α-частиц и двух нейтронов;
- Угол α - α рассеяния $\cos \vartheta_{\alpha\alpha} = \frac{(P_{\alpha\alpha}^{IS}P_{\alpha\alpha}^{FS})}{|P_{\alpha\alpha}^{IS}||P_{\alpha\alpha}^{FS}|};$
- Угол Треймана-Янга $\cos \vartheta_{TY} = \frac{([P_{\alpha 1}P_{\alpha 2}][P_{6He}P_{2n}])}{|[P_{\alpha 1}P_{\alpha 2}]||[P_{6He}P_{2n}]|};$
- Гипер-угол $\tan \vartheta_h = \sqrt{E_{nn}/\tilde{E}_{2n-\alpha}}$.

«Квазисвободные» реакции на виртуальных частицах можно использовать для изучения трехтельных взаимодействий

Industrial age of Nuclear Physics.

Industrial scale of the production of rare isotopes; Search for new phenomena untypical for stable nuclei

«Сверхтяжелые» атомы водорода и нейтронная материя

Beams: ³H, ⁶He, ⁸He
Targets: ¹H, ²H, ³H
³H + ³H
$$\rightarrow$$
 p + ⁵H
³H + ³H \rightarrow p + ⁵H
⁶He + ³H \rightarrow ⁸He(*ulj*) + p
 \rightarrow ⁷He(*ulj*) + d
 \rightarrow ⁴He + ⁵H
 \rightarrow ²n + ⁷Li
⁸He + ³H \rightarrow ¹⁰He + p
 \rightarrow ⁹He(*ulj*) + d
 \rightarrow ⁴He + ⁷H
 \rightarrow ⁴n + ⁷Li

Multi-neutron states

Квазисвободные реакции. Приближение плоских волн

