Всероссийская научная конференция

Физика: фундаментальные и прикладные исследования,

образование

Тихоокеанский государственный университет, г. Хабаровск, 2024

ПОРОШКОВАЯ ТЕХНОЛОГИЯ МЕТАЛЛУРГИИ ДЛЯ ПОЛУЧЕНИЯ ГРАДИЕНТНЫХ МАТЕРИАЛОВ НА ОСНОВЕ ТИТАНОВЫХ СПЛАВОВ

Каракчиева Наталья Ивановна, канд. хим. наук, снс Лаборатории химических технологий ХФ ТГУ

Актуальность

Организация, страна	Область исследований	Основные результаты	Ди	Динамика роста научных работ по Ti-Al					
National Institute of Technology Tiruchirappalli, India	структурно-фазовое состояние в системе Ті/Аl.	Зарождение и рост интерметаллической фазы TiAl ₃ в паре Ti/Al происходит в основном на границе раздела Ti/TiAl ₃	за период 2019-2024 гг.						
Институт металлургии УрО РАН , РФ	Исследование легких сплавов на основе алюминия, легированных скандием, а также элементами из группы (Ti, Zr, Hf и др.)	Определены закономерности затвердевания указанных систем, морфология и состав интерметаллидов при заданном медленном затвердевании в тигле удлиненной формы.	50000 40000	31041	35382	39214	44022	45009	29613
Институт химической физики НАН РА	синтезу гидридов металлов методом СВС.	Установлено, что существует явная зависимость структуры полученных сплавов от состава исходной шихты.	30000 20000						
Томский государственный университет, РФ	Исследован и разработан мет (вакуумно-дуговая гарнисажная г нанесения плакирующего слоя (горячая пластическая квазигидростати	од получения ванадиевого сплава плавка), а также исследованы методы их коррозионностойкого материала деформация, кручение под ическом давлением).	10000 0	2019 г.	2020 г.	2021 г.	2022 г.	2023 г.	2024 г.

Национальный исследовательский Томский государственный университет

Элемент	Mg	Ti	Al	Ti-Al 4
Sc	Повышает прочностные характеристик, пластичность (до 25-30% масс)	Понижает модуль упругости	Повышает предел прочности	Повышает термостойкость, высокотемпературный предел текучести
Y	повышает прочностные характеристик при комнатной и повышенной температуре	Улучшает микроструктуру, увеличивает пластичность, пассивируемость, снижение перенапряжение водорода	Повышает микротвердость, температуру кристаллизации, твердость по Виккерсу, электрическое сопротивление, более низкая восприимчивость к растрескиванию	Увеличивает устойчивость к окислению за счет образования оксидной пленки
Nd		Понижает модуль упругости без потери прочности	Улучшает жаропрочность, повышает твердость с минимальным изменением пластичности повышает прочностные и пластические	Увеличивает общую
Dy	Повышает прочностные характеристик, пластичность	Повышает пластичность	свойства на сжатие Уменьшает газосодержание, снижает	намагниченности, устойчивость к окислению
Ho		Понижает модуль упругости	удельное сопротивление и повышает прочность	
Er		Улучшает микроструктуры, повышает прочность		Уменьшает размер зерна, повышает напряжение высокотемпературного течения
Zr	Измельчение зерна, повышение предела текучести и пластичности, уменьшение	Понижает модуль упругости без потери прочности	Уменьшает размер зерна, улучшает механические характеристики при повышенных температурах, повышает прочность	Уменьшает размер зерна, повышает термостойкость, высокотемпературный и низкотемпературный предел

текучести

Уменьшает размер зерна, повышает термостойкость

Уменьшает плотность и размер зерна.

Понижает модуль упругости

Улучшает биосовместимость,

Уменьшает температуру воспламенения,

Hf

пористости Измельчение зерна,

повышение

микротвердости

Порядковый номер	Элемент	Электронная конфигурация	Структура решетки, Á	r _{ar} , HM	Температура, °С		, °C	Емкость по водороду, масс.%	Максимальная растворимость в Mg, %масс 5
-		1 11			Плавления	Кипения	образования гидрида		
12	Mg	[Ne]3s ²	Гексагональная a=3,203, c=5,200	0,160	650	1090	260-570	7,61	-
13	Al	[Ne]3s ² 3p ¹	Кубическая гранецентрированая a = 4,050	0,124	660	2470	-10-90	10,00	12,6
22	Ti	[Ar]3d ² 4s ²	Гексагональная плотноупакованная, а =2,951, c=4,697 (α)	0,147	1660	3287	300-1000	0,89-4,02	0,045
21	Sc	[Ar]3d ¹ 4s ²	Гексагональная, a=3,309, c=5,268	0,162	1541	2837	450	4,26	29,0-30,0
39	Y	[Kr]4d ¹ 5s ²	Гексагональная, a=3,647, c=5,731	0,178	1522	3338	300-1500	2,20-3,26	12,0-12,7
60	Nd	[Xe]4f ⁴ 6s ²	Гексагональная, a=3,658 c=11,800	0,182	1021	3068	200-1250	1,36-2,04	3,6
66	Dy	$[Xe]4f^{10}6s^2$	Гексагональная, a=3,593, c=5,654	0,180	1407	2567	230-1350	1,18-1,81	25,8
67	Но	[Xe]4f ¹¹ 6s ²	Гексагональная, a=3,577, c=5,616	0,179	1474	2695	230-500	1,17-1,79	28,0
68	Er	[Xe]4f ¹² 6s ²	Гексагональная, a=3,560, c=5,587	0,177	1529	2863	230-500	1,15-1,76	32,7
40	Zr	[Kr]4d ² 5s ²	Гексагональная, a=3,231, c=5,148	0,160	1852	4377	300-1100	1,67-2,14	3,6
72	Hf	[Yb ²⁺]5d ² 6s ²	Гексагональная, a=3,196, c=5,051	0,167	2233	4603	300-1000	0,94-1,11	не смешиваются при P < 4 ГПа

Цель работы - разработать новые металлические материалы на основе системы Ti-Al-Me (Sc, Y, Dy, Ho, Er, Zr, Hf), выявить фундаментальные связи состав-структура-свойства и их влияние на механические свойства магниевых сплавов Mr95.

Для достижения цели работы были поставлены следующие задачи:

- <u>Провести</u> теоретическое моделирование фазовых равновесий в многокомпонентных системах на основе Ti-Al-Me (Sc, Y, Dy, Ho, Er, Zr, Hf), <u>определить</u> термодинамические закономерности устойчивости фаз, их кристаллические структуры и функциональные свойства;
- На основании результатов математического моделирования <u>разработать</u> физико-химические основы технологии порошковой металлургии («Гидридной технологии») новых металлических материалов на основе системы Ti-Al-Me (Sc, Y, Dy, Ho, Er, Zr, Hf) и изучить закономерности их формирования;
- <u>Выявить закономерности</u> изменения функциональных характеристик металлических материалов на основе системы Ti-Al-Me, обусловленные твердофазными превращениями в условиях их получения;
- **Выявить закономерности** изменения механических свойств магниевых сплавов от состава лигатуры на основе Ti-Al.

- Лигатура Ti49Al2X (Me= Sc, Y, Nd, Dy, Ho, Er, Zr, Hf; ат.%), полученные «Гидридной технологией»;

- Магниевый сплав Мг95-лигатура

Исходные материалы для получения сплавов, лигатуры и композиционных материалов

Для получения образцов использовали порошок титана (ПТЭМ-1, ТПП – 8, алюминия (АСД-0, АСД-4), скандия (СкМ-1); иттрия (ИтМ-1), диспрозия (ДиМ-1); гольмия (ГоМ-1); эрбия (ЭрБ-1), порошок кальциетермический циркония; порошок электролитического гафния, магний Мг-95

Предмет исследований

Структура, физико-механические и прочностные свойства лигатур на основе Ti-Al-X (X= Sc, Y, Nd, Dy, Ho, Er,Zr, Hf). Структура и механические свойства магниевого сплава состава Мг95-лигатура.

Методы моделирования

ATAT, USPEX, в качестве интерфейса использовались ab initio программы Quantum Espressio и VASP;

Параметры решеток, объем элементарной ячейки, пространственная группа, энергия ячейки, геометрическая оптимизация элементарных ячеек вычисляли дополнительно в коде CASTEP;

Идентификация структурного состояния и количественного содержания фаз осуществлялось методом Ритвельда с помощью Reflex;

Фазовые диаграммы тройных систем построенные с помощью бесплатных ресурсов, предоставляемых открытой платформой MaterialsProject.

Методы исследований

Растровая и просвечивающая электронная микроскопия с приставками для рентгеноспектрального анализа и EBSD-детектором, рентгенофазовые и рентгеноструктурные исследования с использованием баз данных PDF-4, методы исследования плотности микротвердости по Виккерсу, исследования электросопротивления.

«Гидридная технология» получения новых металлических систем

Рисунок — Схема получения образцов по «Гидридной технологии»

БЛОК 1: ПОЛУЧЕНИЕ ГИДРИДОВ МЕТАЛЛОВ

БЛОК 2: КОМПАКТИРОВАНИЕ СМЕСИ

БЛОК 3: ОТЖИГ ОБРАЗЦОВ

БЛОК 1: ПОЛУЧЕНИЕ ГИДРИДОВ МЕТАЛЛОВ

«Гидридная технология» получения новых металлических систем

БЛОК 2: КОМПАКТИРОВАНИЕ СМЕСИ

Нагрузка до 4 МПа. На выходе - цилиндр с насыпной плотностью 3 г/см³ ± 0,2

Подгруппа скандия

Ilepı	ГвЧ	Ι	II	III	IV	V	VI	VII		VIII
I	1	(H)						Н 1,00797 Водород	Не 2 4,0026 Гелий	Обозначение Атомный элемента номер
II	2	Li 3 6,939 Литий	Ве 4 9,0122 Бериллий	В 5 10,811 Бор	С 6 12,01115 Углерол	N 7 14,0067	О 8 15,9994 Кислород	F 9 Фтор 9	Ne 10 20,179 Неон	Li 3 6,939 Литий
III	3	Na 11 22,9898 Натрий	Mg 12 24,305 Магний	Al 13 26,9815 Алюминий	Si 14 28,086 Кремний	Р 15 30,9738 Фосфор	S 16 32,064 Cepa	СІ 17 35,453 Хлор	Аг 18 39,948 Аргон	Относительная атомная масса
IV	4	К 19 89,102 Калий	Са 20 40,08 Кальций	21 Sc 44.956 Скандий	²² Ті ^{47,90} Титан	23 V 50,942 Ванадий	²⁴ 51,996 Сг Хром	25 Мп 54.9380 Марганец	26 Fe 55,847 Железо	27 Со 58,9330 Кобальт 28 Ni 58,71 Никель
± v	5	29 63,546 Си Медь	30 65,37 Zn Цинк	Ga 31 69,72 Галлий	Ge 32 72,59 Германий	As 33 _{74,9216} Мышьяк	Se 34 78,96 Селен	Br 35 79,904 Бром	Кг 36 83,80 Криптон	
V	6	Rb 37 85,47 Рубидий	Sr 38 87,62 Стронций	39 Ү ^{88,905} Иттрий	40 Zr ^{91,22} Цирконий	41 Nb 92.906 Ниобий	42 Мо 95,94 Молибден	43 Тс [99] Технеций	44 Ru 101,07 Рутений	45 Rh 102.905 Родий 46 Pd 106.4 Палладий
	7	47 107,868 Серебро	48 Сd 112.40 Кадмий	In 49 114,82 Индий	Sn 50 118,69 Олово	Sb 51 121,75 Сурьма	Те 52 127,60 Теллур	I 53 126,9044 Иод	Хе 54 131,30 Ксенон	
VI	8	Cs 55 132,905 Цезий	Ва 56 Барий	57 La* 138,91 Лантан	72 Нf 178,49 Гафний	73 Та 180,948 Тантал	74 W 183,85 Вольфрам	75 186,2 Рений	76 О S 190,2 Осмий	77 Іг 192,2 Иридий 78 Рt 195,09 Платина
V I	9	79 196,967 Золото	80 200,59 НВ Ртуть	Tl 81 204,37 Таллий	Рb 82 207,19 Свинец	Ві 83 208,980 Висмут	Ро 84 [210]* Полоний	At 85 [210] Астат	Rn 86 [222] Радон	
VII	10	Fr 87 Франций [223]	Ra 88 Радий [226]	89 Ас** [227] Актиний	104 Rf [261] Резерфордий	105 [262] Дубний	106 Sg [263] Сиборгий	107 Вh [262] Борий	108 Н S [265] Хассий	109 Мt [266] Мейтнерий
Ланта ноиды*	0,12 Церий	59 Рг 60 140,907 Празеодим	Nd 4.24 Неодим Прог	Рт 62 Sn 150,35 Самари	а 63 Ец 6 151,96 Европий I	4 Gd 57,25 Гадолиний 158,9	Тb 66 D 162,50 Гербий Диспроз	67 Но 164,930 Гольмий	68 Er 39 167,26 Эрбий 68,9	Тта 70 Тр 34 Тулий 70 Тр 173,04 71 Гл Иттербий 71 Гл 174,97 Лютеций
Акти ** юнды *3	Тh 2,038 Торий	91 Ра 92 [231] Протактиний	2 U 93 [237] Уран Непт	Np 94 Р 1 [244] Плутони	1 95 Am 9 [243] й Америций	6 Ст 97 ^{247]} Кюрий [247] Кюрий Бе	Вк 98 ([252]* Калифорн	Сf 99 Es [254] Эйнштейний	100 Fm [257] Фермий Ион	Md 102 No 103 Lr [255] Делевий Нобелий Лоуренсий

Подгруппа иттрия

ITepi	Ъяд	Ι	II	III	IV	V	VI	VII		VIII
Ι	1	(H)						Н 1,00797 Водород	Не 2 4,0026 Гелий	Обозначение Атомный элемента номер
II	2	Li 3 6,939 Литий	Ве 4 9,0122 Бериллий	В 5 10,811 Бор	С 6 12.01115 Углерол	N 7 14,0067	О 8 15,9994 Кислород	F 9 18,9984 Фтор	Ne 10 20,179 Неон	Li 3 6,939 Литий
III	3	Na 11 22,9898 Натрий	Mg 12 24,305 Магний	Al 13 26.9815 Алюминий	Si 14 28,086 Кремний	Р 15 30,9738 Фосфор	S 16 32,064 Cepa	СІ 17 35,453 Хлор	Аг 18 39,948 Аргон	Относительная атомная масса
IV	4	К 19 Калий ^{39,102}	Са 20 40,08 Кальций	21 Sc 44,956 Скандий	22 Ті 47,90 Титан	23 V 50,942 Ванадий	24 51,996 Сг Хром	25 Мп 54,9380 Марганец	26 Fe 55,847 Железо	27 Со 28 Ni 58,9330 Кобальт Никель
÷.,	5	29 63,546 Си Медь	30 65,37 Zn Цинк	Ga ³¹ 69,72 Галлий	Ge 32 _{72,59} Германий	As 33 _{74,9216} Мышьяк	Se 34 78,96 Селен	Вг 35 79,904 Бром	Кг 36 83,80 Криптон	
V	6	Rb 37 85,47 Рубидий	Sr 38 87.62 Стронций	39 Ү 88,905 Иттрий	40 Zr 91,22 Цирконий	41 Nb 92.906 Ниобий	42 Мо 95,94 Молибден	43 Тс [99] Технеций	44 Ru 101,07 Рутений	45 Rh 102,905 Родий 46 Pd 106,4 Палладий
· ·	7	47 107,868 Серебро	48 Сd 112.40 Кадмий	In 49 114 82 Индий	Sn 50 118,69 Олово	Sb 51 121,75 Сурьма	Те 52 127,60 Теллур	I 53 126,9044 Иод	Хе 54 131,30 Ксенон	
VI	8	Cs 55 132,905 Цезий	Ва 56 Ба <mark>рий</mark> 56	57 La* 138,91 Лантан	72 Нf 178,49 Гафний	73 Та 180,948 Тантал	74 W 183,85 Вольфрам	75 Re 186,2 Рений	76 Оз 190,2 Осмий	77 Іг 192,2 Иридий 78 Рt 195,09 Платина
V I	9	79 196,967 Золото	80 200,59 Нg Ртуть	Tl 81 204,37 Таллий	Рb 82 207,19 Свинец	Ві 83 208,980 Висмут	Ро 84 [210]* Полоний	At 85 [210] ACTAT	Rn 86 [222] Радон	
VII	10	Fr 87 Франций	Ra 88 [226] Радий	89 [227] Актиний	104 Rf [261] Резерфордий	105 [262] Ду бний	106 Sg [263] Сиборгий	107 [262] Борий	108 Н S [265] Хассий	109 Мt [266] Мейтнерий
Ланта *ылиа* 14	0,12 Церий	59 Рг 140,907 14 Празеодим	Nd 4,24 Неодим Прог	Рт 62 Sn 150,35 Самари	1 63 Ец 6 151,96 й Европий	4 Gd 57,25 Гадолиний 65	24 Сербий 66 Д 162,50 Диспроз	97 67 Но 164,930 Гольмий	68 Er 167,26 Эрбий	Тт 70 Тр 34 Тулий 73,04 Иттербий 71 Lu 174,97 Лютеций
Акти ** юнды 53	Тh 2,038 Торий	91 Ра [231] Протактиний	8,03 Уран 93 Гезт] Непт	Np 94 Р 1 [244] Плутони	1 95 Am 9 [243] й Америций	6 Ст 97 ^{247]} Кюрий ⁹⁷ Бе	Вк 98 ([252]* Калифорн	Сf 99 Es [254] Эйнштейний	100 Fm [257] Фермий Иен	Md 102 No 103 Lr [255] делевий Нобелий Лоуренсий

Подгруппа титана

Ilepı	ГвД	Ι	II	III	IV	V	VI	VII		VIII
Ι	1	(H)						Н 1,00797 Водород	Не 2 4,0026 Гелий	Обозначение Атомный элемента номер
II	2	Li 3 6,939 Литий	Ве 4 9,0122 Бериллий	В 5 10,811 Бор	С 6 12,01115 Углерол	N 7 14,0067 Азот	О 8 15,9994 Кислород	F 9 18,9984 Фтор	Ne 10 20,179 Неон	Li 3 6,939 Литий
III	3	Na 11 22,9898 Натрий	Mg 12 24,305 Магний	Al 13 26.9815 Алюминий	Si 14 28,086 Кремний	Р 15 30,9738 Фосфор	S 16 32,064 Cepa	СІ 17 35,453 Хлор	Аг 18 39,948 Аргон	Относительная атомная масса
IV	4	К алий 19 Калий	Са 20 40,08 Кальций	21 Sc 44,956 Скандий	²² Ті ^{47,90} Титан	23 V 50,942 Ванадий	24 Сг 51,996 Хром	25 Мп 54,9380 Марганец	26 Fe 55,847 Железо	27 Со 58,9330 Кобальт 28 Ni 58,71 Никель
<u> </u>	5	29 63,546 Сц Медь	30 65,37 Zn Цинк	Ga ³¹ 69,72 Галлий	Ge 32 72,59 Германий	As 33 _{74,9216} Мышьяк	Se 34 78,96 Селен	Вг 35 79,904 Бром	Кг 36 83,80 Криптон	
V	6	Rb 37 85,47 Рубидий	Sr 38 87.62 Стронций	39 Ү 88,905 Иттрий	40 Zr ^{91,22} Цирконий	41 Nb 92,906 Ниобий	42 Мо 95,94 Молибден	43 Тс [99] Технеций	44 Ru 101,07 Рутений	45 Rh 102,905 Родий 46 Pd 106,4 Палладий
Ť	7	47 107,868 Серебро	48 Сd 112.40 Кадмий		Sn 50 118,69 Олово	5b 51 121,75 Сурьма	Те 52 127,60 Теллур	I 53 126,9044 Иод	Хе 54 131,30 Ксенон	
VI	8	Сз 55 Цезий 132,905	Ва 56 Ба <mark>рий</mark> 56	57 La* 138.91 Лантан	72 Нf ^{178,49} Гафний	73 Та 180.948 Тантал	74 W 183,85 Вольфрам	75 Re 186,2 Рений	76 Оз 190,2 Осмий	77 Іг 192,2 Иридий 78 Рt 195,09 Платина
V I	9	79 196,967 Золото	80 200,59 Нg Ртуть	Tl 81 204,37 Таллий	Рb 82 207,19 Свинец	Ві 83 208,980 Висмут	Ро 84 [210]* Полоний	At 85 [210] Actat	Rn 86 [222] Радон	
VII	10	Fr 87 [223] Франций	Ra 88 [226] Радий	89 Ас** ^[227] Актиний	104 Rf [261] Резерфордий	105 [262] Дубний	106 Sg [263] Сиборгий	107 [262] Вһ Борий	108 Н S [265] Хассий	109 Мt [266] Мейтнерий
Ланта ноиды*	3 Се 10.12 Церий	59 Рг 140,907 Празеодим	Nd 51 4.24 Неодим Прог	Рт 62 Sn 150,35 Самари	1 63 Ец 6 151,96 1 й Европий I	4 Gd 57,25 ^{Гадолиний} 65	ТЬ 66 D 162,50 Гербий Диспроз	67 Но 164,930 Гольмий	68 Er 39 167,26 Эрбий 68,9	Тт 34 Тулий 70 Тр 173,04 Иттербий 71 Lu 174,97 Лютеций
Акти +онды ** 6 5) 32,038 Торий	91 Ра 92 [231] Протактиний 23	2 8,03 Уран [237] Непт	Np ⁹⁴ ^[244] Плутони	1 95 Am 9 [243] й Америций	6 Ст ^{247]} Кюрий ⁹⁷ Бе	Вк 98 ([252]* Калифорн	Сf 99 Es [254] Эйнштейний	100 Fm [257] Фермий Исн.	Md 102 No 103 Lr [255] Делевий Нобелий Лоуренсий

Подгруппа скандия

ITepi	ГвД	Ι	II	III	IV	V	VI	VII		VIII
Ι	1	(H)						H 1,00797 Водород	Не 2 4,0026 Гелий	Обозначение Атомный элемента номер
II	2	Li 3 6,939 Литий	Ве 4 9,0122 Бериллий	В 5 10,811 Бор	С 6 12.01115 Углерол	N 7 14,0067 Азот	О 8 15,9994 Кислород	F 9 18,9984 Фтор	Ne 10 20,179 Неон	Li 3 6,939 Литий
III	3	Na 11 22,9898 Натрий	Mg 12 24,305 Магний	Al 13 26,9815 Алюминий	Si 14 28,086 Кремний	Р 15 30,9738 Фосфор	S 16 32,064 Cepa	СІ 17 35,453 Хлор	Аг 18 39,948 Аргон	Относительная атомная масса
IV	4	К 19 89,102 Калий	Са 20 40,08 Кальций	21 Sc 44.956 Скандий	22 47,90 Титан	23 V 50,942 Ванадий	24 51,996 Сг Хром	25 Мп 54,9380 Марганец	26 Fe 55,847 Железо	27 Со 58,9330 Кобальт 28 Ni 58,71 Никель
T A	5	29 63,546 Си Медь	30 Zn 65,37 Цинк	Ga 31 69,72 Галлий	Ge 32 _{72,59} Германий	As 33 _{74,9216} Мышьяк	Se 34 78,96 Селен	Br 35 79,904 Бром	Кг 36 83,80 Криптон	
V	6	Rb 37 85,47 Рубидий	Sr 38 87.62 Стронций	39 Ү ^{88,905} Иттрий	40 Zr 91,22 Цирконий	41 Nb 92,906 Ниобий	42 Мо 95,94 Молибден	43 Тс [99] Технеций	44 Ru 101,07 Рутений	45 Rh 102,905 Родий 46 Pd Палладий
v	7	47 107,868 Серебро	48 Сd 112.40 Кадмий	In 49 114.82 Индий	Sn 50 118,69 Олово	Sb 51 121,75 Сурьма	Те 52 127,60 Теллур	I 53 126,9044 Иод	Хе 54 131,30 Ксенон	
VI	8	Cs 55 132,905 Цезий	Ва 56 Барий	57 Lа* 138.91 Лантан	72 Нf 178,49 Гафний	73 Та 180.948 Тантал	74 W 183,85 Вольфрам	75 Re 186,2 Рений	76 Оз 190,2 Осмий	77 Іг 192,2 Иридий 78 Р 195,09 Платина
VI	9	79 196,967 Золото	80 200,59 Нg Ртуть	Tl 81 204,37 Таллий	Рb 82 207,19 Свинец	Ві 83 208,980 Висмут	Ро 84 [210]* Полоний	At 85 [210] Actat	Rn 86 [222] Радон	
VII	10	Fr 87 Франций	Ra 88 Радију [226]	89 Ас** [227] Актиний	104 Rf [261] Резерфордий	105 [262] Дубний	106 Sg [263] Сиборгий	107 [262] Борий	108 Н S [265] Хассий	109 Мt [266] Мейтнерий
Ланта ноиды*	3 Се 10,12 Церий	59 Рг 60 140,907 Празеодим	Nd 4.24 Неодим Прог	Рт 62 Sn 150,35 Самари	а 63 Ец 6 151,96 й Европий I	4 Gd 57,25 ^{57,25} б5 158,9 158,9	Тb 66 D 24 Гербий Диспроз	67 Но 164,930 Гольмий	68 Ег 39 167,26 Эрбий	Тт 34 Тулий 70 Ур 173,04 71 Lu 174,97 Лютеций
Акти ** юнды **) Тh 32,038 Торий	91 Ра 92 [231] Протактиний 23	U 93 8,03 Уран [237] Неп	Np 94 Р г [244] Плутони	1 95 Am 9 [243] Америций	6 Ст 97 ²⁴⁷] Кюрий Бе	Вк 98 ([252]* Калифорн	Сf 99 Es [254] Эйнштейний	100 Fm [257] Фермий [257] Мен	Md 102 No 103 Lr [255] Нобелий Лоуренсий

Структурно-фазовое состояние Ti49Al2Sc

3D эталонная решетка сплава Ti_3AlY

Фала	T	Доля, %						
Фаза	тип решетки	Ti50Al	Ti49Al2Sc	Ti49Al2Y				
TiAl	P4/mmm	31	42	1,4				
Ti ₃ Al	$P6_3/mmc$	19	26	18,3				
$Ti_{1.5}Al_{2.5}$	Pmmm	3	11	70,3				
Ti_2Al_5	P4/mmm	3	4	-				
Ti ₅ Al ₁₁	I4/mmm	8	4	-				
TiAl ₂	Cmmm	9	3	-				
$(TiAl_2)_{1.33}$	P4/mmm	2	-	-				
Al	Fm-3m	1	2	8,6				
α-Ti	Im-3m	19	6	1 /				
β-Ti	Im-3m	2	2	1,4				
	Итого	100	100	-100				

N. Karakchieva, O. Lepakova, Yu. Abzaev, V. Sachkov, I. Kurzina // Nanomaterials. – 2021. – Vol. 11, № 918. – 13 p. (access date: 26.02.2021). DOI: 10.3390/nano11040918. (Scopus).

Структурное состояние Ti50Al и Ti49Al2(Sc,Y)

Основными термодинамически устойчивыми фазами являются интерметаллические соединения **TiAl, TiAl₃, TiAl₂** и твердый раствор алюминия в α -Ti

Идентифицированы интерметаллидные фазы TiAl, Ti₃Al, TiAl₂, Ti₅Al₁₁, Ti₃Al₅ и исходные компоненты (α -Ti, β -Ti, Al и Sc), AlSc, AlSc₂, Al₃Sc содержание исходных металлов составляет не более 7,3%.

Ti49Al2Y

Ti49Al2Sc

Ti50Al

Сформировалась основная фаза Ti_3Al_5 . Наряду с зернами Ti_3Al_5 , в структуре сплава в небольшом количестве присутствуют зерна фазы Ti_3Al , малую долю составляют фазы TiAl, Al, α -Ti, Y, YAl₂, Y₃Al₅, YAl₃, Y₃Al, YAl, Y₂Al

Структурное состояние Ti50Al и Ti49Al2(Sc,Y)

Вывод

Введение в систему Ti50Al третьего компонента из подгруппы Sc (Sc,Y) приводит к формированию ламельной структуры типа Ti49Al2(Sc,Y), при этом увеличение ширины ламелей, обогащенных Ti и Al в 1,5-3 раза наблюдается только в случае со Sc.

	a I	II	б	а	IV	б	ā
	B 10,81	5	s ² 2p ¹	C 12,01	6	2s ² 2p ²]
	Аl 26,98154 Алюмин	13 4 3 іий	s²3p¹	Si 28,08 Крем	14 6 ний	3s²3p²]
	3d ¹ 4s ²	21 44, Ска	Sc 9559 ндий	3d²4s	22	Ті 47,90 Титан	
}	Ga 69,72 Галлий	31 4	s²4p¹	Ge 72,59 Герма	32 аний	4s ² 4p ²	1 7 N
	4d ¹ 5s ²	39 88, Ит	Ү 9059 трий	4d²5s	40	Zr 91,22 рконий	2
	In	49		Sn	50		

Подгруппа иттрия

ITepi4	Ъя	Ι	II	III	IV	V	VI	VII		VIII
I	1	(H)						Н 1,00797 Водород	Не 2 4,0026 Гелий	Обозначение Атомный элемента номер
II	2	Li 3 6.939 Литий	Ве 4 9,0122 Бериллий	В 5 10,811 Бор	С 6 12,01115 Углерол	N 7 14,0067	О 8 15,9994 Кислород	F 9 Фтор 9	Ne 10 20,179 Неон	Li 3 6,939 Литий
III	3	Na 11 22,9898 Натрий	Mg 12 24,305 Магний	Al 13 26,9815 Алюминий	Si 14 28,086 Кремний	Р 15 30,9738 Фосфор	S 16 32,064 Cepa	СІ 17 35,453 Хлор	Аг 18 39,948 Аргон	Относительная атомная масса
IV	4	К алий 19 Калий 39,102	Са 20 40,08 Кальций	21 Sc 44,956 Скандий	22 Ті 47.90 Титан	23 V 50,942 Ванадий	24 Сг 51,996 Хром	25 Мп 54.9380 Марганец	26 55,847 Fe Железо	27 Со 28 Ni 58,9330 Кобальт Никель
± v	5	29 63,546 Си Медь	30 Zn 65,37 Цинк	Ga 31 69,72 Галлий	Ge 32 _{72,59} Германий	As 33 _{74,9216} Мышьяк	Se 34 78,96 Селен	Вг 35 79,904 Бром	Кг 36 83,80 Криптон	
V	6	Rb 37 85,47 Рубидий	Sr 38 87.62 Стронций	39 Ү 88,905 Иттрий	40 Zr ^{91,22} Цирконий	41 Nb 92.906 Ниобий	42 Мо 95,94 Молибден	43 Тс [99] Технеций	44 Ru 101,07 Рутений	45 Rh 46 Pd 102.905 Родий Палладий
Ť	7	47 107,868 Серебро	48 Сd 112.40 Кадмий	In 49 114 82 Индий	Sn 50 118,69 Олово	Sb 51 121,75 Сурьма	Те 52 127,60 Теллур	I 53 126,9044 Иод	Хе 54 131,30 Ксенон	
VI	8	Cs 55 Цезий 132,905	Ва 56 Ба <mark>рий</mark> 56	57 La* 138,91 Лантан	72 Нf 178,49 Гафний	73 Та 180,948 Тантал	74 W 183,85 Вольфрам	75 Re 186,2 Рений	76 Оз 190,2 Осмий	77 Іг 78 Р 192,2 Иридий 78 Платина
VI	9	79 196,967 Золото	80 200,59 Нg Ртуть	Tl 81 204,37 Таллий	Рb 82 207,19 Свинец	Ві 83 208,980 Висмут	Ро 84 [210]* Полоний	At 85 [210] Астат	Rn 86 [222] Радон	
VII	10	Fr 87 Франций [223]	Ra 88 [226] Разий	89 Ас** [227] Актиний	104 Rf [261] Резерфордий	105 [262] Дубний	106 Sg [263] Сиборгий	107 Вh [262] Борий	108 Н S [265] Хассий	109 Мt ¹¹⁰ [266] Мейтнерий
814 * 14 14 14	Ce	59 Pr 60	Nd 1	Pm 62 Sn	1 63 Eu 6	4 Gd 65	Tb 66 D	y 67 Ho	58 Er 39	Tm 70 Yb 71 Lu
* Ла	Церий	Празеодим	Неодим Про	иетий Самари	й Европий	Гадолиний 1	Тербий Диспроз	ий Гольмий	Эрбий	Тулий Иттербий Лютеций
АКТИ 4 ИОНДЫ 30	2,038 Торий	91 Ра [231] Протактиний 23	8,03 Уран [237] Непт	Np 94 Р 1 [244] Плутони	1 95 Am 9 [243] й Америций [2	6 Ст 97 247] Кюрий Бе	Вк 98 [252]* Калифорн	СТ 99 Es [254] ини Эйнштейний	100 Fm 101 [257] Фермий Мен	Md 102 No 103 Lr [255] делевий Нобелий Лоуренсий

Моделирование фазовых диаграмм Ti-Al-Me (Me = Nd, Dy, Ho, Er)

Фазовый состав систем Ti-Al-Me (Me = Nd, Dy, Ho, Er), полученных «Гидридной технологией» 26

Теоретическое моделирование формирования устойчивых фаз в многокомпонентных системах на основе 27 Ti-Al-Me (Me = Nd, Dy, Ho, Er)

3D эталонные решетки

Al₄Ti₁₂Dy₃

Al₄Ti₁₂Ho₃

Вклад фазы в интегральную интенсивность, %	Nd	Dy	Но	Er
TiAl	65	68	$1 (+ Ti_3Al_3)$	33
TiAl ₂	23	-	-	63
Ti ₆ Al ₂	8	-	-	-
$Ti_2Al_2Nd_6$	4	-	-	-
Ti ₃ Al ₃	-	19	1 (+ Ti ₃ Al)	-
Ti1 ₂ Al ₄ Dy ₃	-	13	-	-
Al ₄ Ti ₁₂ Ho ₃	-	-	0,05	-
$Al_2Ti_2Er_2$	-	-	-	4

USPEX-SIESTA была создана кристаллографическая база стабильных и квазистабильных структур известного элементного состава.

ПЭМ-изображения образцов Ti-Al-Me (Me = Nd, Dy, Ho, Er)

Ti49Al2Nd Ti49Al2Dy Ti49Al2Ho Ti49Al2Er

Ti49Al2Nd

Ti49Al2Ho

Ti49Al2Er

Введение в систему Ti50Al третьего компонента из подгруппы Y (Y, Nd, Dy, Ho, Er) в количестве до 2 ат. %. приводит к формированию изотипических соединений со структурой типа Ho₆Mo₄Al₄₃

Подгруппа титана

ITep:	Pa	Ι	II	III	IV	V	VI	VII		VIII	
I	1	(H)						Н 1,00797 Водород	Не 2 4,0026 Гелий	Обозначение элемента	Атомный номер
II	2	Li 3 6,939 Литий	Ве 4 9,0122 Бериллий	В 5 10,811 Бор	С 6 12,01115 Углерол	N 7 14,0067 Азот	О 8 15,9994 Кислород	F 9 18,9984 Фтор	Ne 10 20,179 Неон	Li Литий	3 6,939
III	3	Na 11 22,9898 Натрий	Mg 12 24,305 Магний	Al 13 26,9815 Алюминий	Si 14 28,086 Кремний	Р 15 30,9738 Фосфор	S 16 32,064 Cepa	Cl 17 35,453 Хлор	Аг 18 39,948 Аргон	(E	Относительная атомная масса
IV	4	К алий 19 Калий 19	Са 20 40,08 Кальций	21 Sc 44,956 Скандий	22 47,90 Титан	23 V 50,942 Ванадий	24 Сг 51,996 Хром	25 Мп 54.9380 Марганец	26 Fe 55,847 Железо	27 Со 58,9330 Кобальт	28 58,71 Ni Никель
	5	29 63,546 Си Медь	30 Zn 65,37 Цинк	Ga 31 69,72 Галлий	Ge 32 72,59 Германий	As 33 _{74,9216} Мышьяк	Se 34 78,96 Селен	Вг 35 79,904 Бром	Кг 36 83,80 Криптон		
V	6	Rb 37 85,47 Рубидий	Sr 38 87,62 Стронций	39 Ү 88,905 Иттрий	40 Zr ^{91,22} Цирконий	41 Nb 92,906 Ниобий	42 Мо 95,94 Молибден	43 Тс [99] Технеций	44 Ru ^{101,07} Рутений	45 Rh 102,905 Родий	46 Рd 106.4 Палладий
	7	47 107,868 Серебро	48 Сd 112.40 Кадмий		Sn 50 118,69 Олово	5b 51 121,75 Сурьма	Те 52 127,60 Теллур	I 53 126,9044 Иод	Хе 54 131,30 Ксенон		
VT	8	Сз 55 132,905 Цезий	Ва 56 Ба <mark>рий</mark>	57 La* 138.91 Лантан	72 Нf ^{178,49} Гафний	73 Та 180,948 Тантал	74 W 183,85 Вольфрам	75 Re 186,2 Рений	76 Оз 190,2 Осмий	77 Іг 192,2 Иридий	78 Рt 195,09 Платина
VI	9	79 196,967 Золото	80 200,59 Нg Ртуть	Tl 81 204,37 Таллий	Рb 82 207,19 Свинец	Ві 83 208,980 Висмут	Ро 84 [210]* Полоний	At 85 [210] Actat	Rn 86 [222] Радон		
VII	10	Fr 87 [223] Франций	Ra 88 [226] Радий	89 Ас** [227] Актиний	104 Rf [261] Резерфордий	105 Db [262] Дубний	106 Sg [263] Сиборгий	107 Вh [262] Борий	108 Н S [265] Хассий	109 Мt [266] Мейтнерий	110
Ланта ноиды* 14	в Се 10.12 Церий	59 Рг 60 140,907 Празеодим	Nd 4.24 Неодим Прог	Рт 62 Sn 150,35 Самари	1 63 Ец 6 151,96 Европий I	4 Gd 57,25 Гадолиний	Тb 66 D 24 162,50 Лербий Диспроз	97 Но 164,930 ий Гольмий	68 Ег 39 167,26 Эрбий 68,9	Тт 934 Тулий 70 Ү 173,04 Иттерби	b 71 Lu ^{174,97} Лютеций
Акти ** Акти 55) Th 22,038 Торий	91 Ра [231] Протактиний 92	U 93 8,03 Уран [237] Непт	Np уний 94 Р 1 [244] Плутони	1 95 Am 95 [243] й Америций	6 Ст ^{247]} Кюрий 97 Бе	Вк 98 ([252]* Калифорн	С f 99 Es [254] Эйнштейний	100 Fm [257] Фермий Иен	Md 102 N] делевий 102 П	0 103 Lr [256] Лоуренсий

Теоретическое моделирование Ti-Al-Me (Me = Nd, Dy, Ho, Er)

Фазы							
Общие	стабильные	нестабильные					
стабильные	Zr						
Zr(Hf), Ti, Al, Ti ₃ Al, TiAl, TiAl ₂ , TiAl ₃ , Zr(Hf) ₄ Al ₃ , Zr(Hf)Al ₂ , Zr(Hf)Al ₃	Zr ₂ Al ₃	$ZrTi_{2},$ $Zr_{3}Al, Zr_{5}Al_{4},$ $ZrTi_{2}Al,$ $Zr_{2}TiAl$					
нестабильные		Hf					
$Ti_{3}Al_{5}, Ti_{5}Al_{11}, Zr(Hf)Ti_{3},$ $Zr(Hf)Ti, Zr(Hf)_{2}Al, Zr(Hf)_{5}Al_{3},$ $Zr(Hf)_{3}Al_{2}, Zr(Hf)Al, Zr(Hf)_{3}Al,$	-	Hf ₂ Al ₃					

Теоретическое моделирование Ti-Al-Me (Me = Nd, Dy, Ho, Er)

3D эталонные решетки сплава TiAl₄₉Me₂ (Me=Zr, Hf)

- доминируют твердые растворы на основе Al₁₀Ti₉Me, доля которых превышает 0,677 полного содержания в случае Ti49Al2Hf, и 0,745 Ti49Al2Zr.
- параметры уточненных решеток и объем Al₁₀Ti₉Me отличаются незначительно от значений в исходном состоянии.
- в сплаве Al₁₀Ti₉Zr объем решетки увеличивается в основном за счет увеличения базисной плоскости

Ti-Al-Me (Me = Zr, Hf)

Ti49Al2Zr

Ti49Al2Hf

Ti49Al2Zr		Образец	Ti49Al2Hf		
TiAl	65 %		TiAl ₃	90 %	
Ti ₃ Al	32 %	Фазовыи состав	Ti _{0,6} Al _{0,4}	6 %	
Ti2Zr (ZrTi5 + Zr)	3 %		TiAl	4 %	

градиентного состава.

Введение в систему Ti50Al третьего компонента из подгруппы титана (Zr, Hf) не приводит к образованию ламельной структуры И изотипических соединений. Введение способствует компонентов образованию твердых растворов

III	IV
В 5 Бор 5	С 6 12,01115 Углерол
Al 13 26.9815 Алюминий	Si 14 28,086 Кремний
21 Sc 44,956 Скандий	²² Ті 47.90 Титан
Ga ³¹ _{69,72} Галлий	Ge 32 _{72,59} Германий
39 Ү ^{88,905} Иттрий	40 Zr ^{91,22} Цирконий
	Sn 50 0лово 118,69
57 La* ^{138,91} Лантан	72 Нf ^{178,49} Гафний
Tl 81 _{204,37} Таллий	Рb 82 Свинец ^{207,19}
89 Ac**	104 Rf

Фазовый состав образцов на основе системы Ti-Al

Образец	ΔH^{1423}_{f} ,	Ti50A1	T:40A12So	T:40A12V	T:49A12Nd	Ti40A12Dv	T40A12Ho	Ti40A12Er	Ti40A127r	Ti40412Hf
Фазы	кДж/моль	IIJUAI	1149A1250	1149A121	1149A121\u	TI49AI2Dy	149A12110	1149AI2EI	1149A12ZI	1149712111
TiAl	-75,8					P4/n	nmm			
Ti ₃ Al	-92,5		P63/m	птс			P63/	mmc		
Ti ₃ Al ₅	-		P/mi	nm				P/mmm		
Ti ₅ Al ₁₁	-	P_{i}	mmm			Pmmm				
β-ті	-	In	m-3m			Im-3m		P6₃/mmc		
α-Ti	-	Im-3m	Fm-3m				Fm-3m	Im-3m		
Ti ₂ Al ₅	-113,7	P4	/mmm			P4/mmm				
TiAl ₂	-89,7	C	mmm			Cmmm		Cmmm		
TiAl ₃	-138,1									I4/mmc
Al	-				Fm3m					
Sc/Y/ Dy/Ho/Hf	-		P4/nmm1	P6₃/mmc		I	P63/mmc			P63/mmc
AlMe (Me=Nd, Hf)	[Hf] = -60,9				Pm3m					C/mmm
MeAl ₂ , Me=Dy,Y,Ho,Er	[Y] = -172,6 [Er] = -25,0					Fd	<u>3</u> m1			
Me₀Ti₄Al₄₃, Me= Y,Nd,Dy, Ho, Er	[Dy] = -21,1 [Ho] = -20,8					P63/1	ncm			
Y ₃ Al ₅	-			P63/mmc						
Ti ₂ Zr	-								P6/mmm	P63/mmc
Y3Al, YAl, ScAl	[YAl] = -73,5			Pm3m						
Me ₂ Al (Sc, Y)	$[Y_2Al] = -146,6$		P63/mmc	Pnma						
Me ₃ Al ₂ , Me=Dy, Ho, Hf	[Hf] = -128,5					$P4_2/1$	mnm			P42-mnm
MeAl ₃ , Me=Sc, Dy, Y,Er	[Y] = -204,9 [Er] = -316,9		Pm3m	P6 ₃ /mmc		R3m		Pm3m		

Диаграмма зависимости значения микротвердости от фазового состава

TiAl TiAl TiAl3 Ti1,5Al2,5 Ti2Al5 Ti5Al11 TiAl2 Al TiAl to b-Ti

Вывод

	Ι	II	III	IV	V	VI	VII	
	(H)						Н 1,00797 Водород	Не 2 4,0026 Гелий
	Li ³ Увеличи	Ве _{9,0122} вается в	В 5 10,811 Бор	С 6 12.01115 Углерол Уме	N 14,0067 НЫШАЕТСЯ	0 8 15,9994 В ислород	F 9 18,9984 Фтор	Ne 10 20,179 Неон
	Na 22 ∏/Ґ 8] Натрий	ПВ 12 24,305 Магний	Al 13 26,9815 Алюминий	Si 14 28,086 Кремний	П/г IV.B ¹⁵ Фосфор	S 16 32,064 Cepa	Сl 17 35,453 Хлор	Аг 18 _{39,948} Аргон
	К алий 19 Калий	Са Кальций ²⁰ 10,08	21 Sc 44,956 Скандий	22 Ті 47.90 Титан	23 V 50 942 Ванадий	²⁴ ^{51,996} Сг _{Хром}	25 54.9380 Мп Марганец	26 Fe ^{55,847} Железо
	29 63,546 Сц Медь	30 65,37 Zn 1 инк	Ga ³¹ _{69,72} Галлий	Ge 32 _{72,59} Германий	As 33 _{74,9216} Мишьяк	Se 34 78,96 Селен	Вг 35 Бром 79,904	Кг 36 ^{83,80} Криптон
	Rb 37 Рубидий ^{85,47}	Sr 38 57,62 Стронци	39 Ү ^{88,905} Иттрий	40 Zr ^{91,22} Цирконий	41 92 906 Ниобий	42 Мо 95,94 Молибден	43 Тс [99] _{Технеций}	44 Ru ^{101,07} Рутений
	47 107,868 Ад Серебро	48 112.40 Кадмий	In 49 Индий 114,82	Sn 50 118,69 Олово	Sb 51 _{121,75} Сурьма	Те 52 _{127,60} Теллур	∎ 53 126,9044 Иод	Хе 54 Ксенон 131,30
	Cs 55 Цезий 132,905	Ва 56 Ба <mark>рий</mark> 56	57 La* ^{138.91} Лантан	72 Нf ^{178,49} Гафний	73 18 ,948 Тантал	74 W 183,85 Вольфрам	75 186,2 Рений	76 Оз 190,2 Осмий
	79 196,967 Золото	80 20 ,59 Нg Ртуть	Tl 81 _{204,37} Таллий	Рb 82 ^{207,19} Свинец	Ві 83 208,980 Висмут	Ро ⁸⁴ Полоний	At 85 Actar [210]	Rn 86 [222] Радон
	Fr 87 ^[223] Франций	R а 88 [226] Разий	89 ^[227] АсУм Актиний	еньшаетс Резерфордий	я В сем. Ц Дубний	а ¹⁰⁶ Sg ^[263] Сиборгий	107 Вһ [262] Борий	108 Н S [265] Харсий
10 AN	59 Pr 30	Nd 11 4.24 Heogun Upon	Рт 62 Sn 150,35 Самари	n 63 Ец 6 151,96 1 Европий	4 Gd 65 57,25 Гадолиний	ТЬ 66 D 162,50 Листроз	у 67 Но 164,930 ий Гольмий	68 Er 167,26 Эрбий
l	91 Pa 92 [231] Pa 92	U 93 8,03 U 237]	Np 94 P1	u ⁹⁵ Am ⁹	6 Cm 97 2471 [247]	Bk 98 [252]*	Cf 99 Es	100 Fm 101 [257]

Введение в системы Ti-Al третьего компонента в количестве до 2 ат.% приводит к изменению микроструктуры слоев за счет твердофазного и дисперсионного упрочнения, что способствует трехкомпонентных материалах типа Β Ti49Al2X, (X=Sc,Y,Dy,Ho,Er,Zr,Hf) повышению микротвердости от 1,2 до 1,8 ГПа при легировании элементами IIIВ подгруппы, снижению от 5,1 до 2,2 ГПа при легировании элементами IVB подгруппы и от 5,1 ГПа до 0,3 ГПа при легировании лантаноидами

Sc, Y, Nd, Dy, Ho, Er, Zr, Hf

Вклад относительно всех металлов

А.А. Клопотов, А.И. Потекаев, Э.В. Козлов и др. Кристаллогеометрические и кристаллохимические закономерности образования бинарных и тройных соединений на основе титана и никеля. Томск. 2011. 312 с.

Расчет значения размерного фактора

Диаграмма Даркена-Гурри

- 1. Введение третьего легирующего элемента (Sc, Y, Ho, Dy, Er, Zr, Hf) в систему Ti50Al в количестве 2 ат.% приводит к повышению энергии связи атомов в кристаллической решетке и существенному стабилизирующему эффекту за счет образования твердых растворов элементов в Ti50Al (TiAl, Ti₃Al, Ti₃Al₅, Ti₅Al₁₁, TiAl₂, Ti₂Al₅) и дополнительных фаз ((Dy,Y,Ho)Al₂, (Dy,Y,Ho,Er)₆Ti₄Al₄₃, Y₃Al₅, Y₃Al, (Y,Sc)Al, (Y,Sc)₂Al, (Dy,Ho)₃Al₂), (Sc,Dy,Ho)Al₃).
- 2. Введение третьего легирующего элемента (Sc,Y) приводит к формированию ламельной структуры в системе $Ti_{49}Al_{49}(Sc,Y)_2$, при этом увеличение ширины Ti- и Al-обогащенных полос в 1,5-3 раза наблюдается только при добавлении скандия. Введение третьего легирующего элемента (Y, Dy, Ho, Er) приводит к формированию изотипических соединений типа $Ho_6Mo_4Al_{43}$ в системе $Ti_{49}Al_{49}(Y,Dy,Ho,Er)_2$.
- 3. Введение третьего легирующего элемента в количестве 2 ат.% в систему Ti50Al способом «Гидридной технологии» способствует изменению микроструктуры слоев за счет твердофазного и дисперсионного упрочнения, что способствует в трехкомпонентных материалах TiAl₄₉X₂, (X=Sc,Y,Dy,Ho,Er,Zr,Hf) повышению микротвердости от 1,2 (TiAl₅₀) до 1,8 ГПа (Ti₄₉Al₄₉Y₂) в IIIВ подгруппе; снижению от 5,1 (TiAl₄₉Zr₂) до 2,2 ГПа (Ti₄₉Al₄₉Hf₂) IVВ подгруппе; уменьшению от 1,6 ГПа (Ti₄₉Al₄₉Dy₂) до 0,3 ГПа (Ti₄₉Al₄₉Er₂) в семействе лантаноидов.

- Лигатура Ti49Al2X (Me= Sc, Y, Nd, Dy, Ho, Er, Zr, Hf; ат.%), полученные «Гидридной технологией»;

- Магниевый сплав Мг95-лигатура

Исходные материалы для получения сплавов, лигатуры и композиционных материалов Для получения образцов использовали порошок титана (ПТЭМ-1, ТПП – 8, алюминия (АСД-0, АСД-4), скандия (СкМ-1); иттрия (ИтМ-1), диспрозия (ДиМ-1); гольмия (ГоМ-1); эрбия (ЭрБ-1), порошок кальциетермический циркония; порошок электролитического гафния

Предмет исследований

Структура, физико-механические и прочностные свойства лигатур на основе Ti-Al-X (X= Sc, Y, Nd, Dy, Ho, Er,Zr, Hf). Структура и механические свойства магниевого сплава состава Мг95-лигатура.

Методы моделирования

ATAT, USPEX, в качестве интерфейса использовались ab initio программы Quantum Espressio и VASP;

Параметры решеток, объем элементарной ячейки, пространственная группа, энергия ячейки, геометрическая оптимизация элементарных ячеек вычисляли дополнительно в коде CASTEP;

Идентификация структурного состояния и количественного содержания фаз осуществлялось методом Ритвельда с помощью Reflex;

Фазовые диаграммы тройных систем построенные с помощью бесплатных ресурсов, предоставляемых открытой платформой MaterialsProject.

Методы исследований

Растровая и просвечивающая электронная микроскопия с приставками для рентгеноспектрального анализа и EBSD-детектором, рентгенофазовые и рентгеноструктурные исследования с использованием баз данных PDF-4, методы исследования плотности микротвердости по Виккерсу, исследования электросопротивления.

Магниевый сплав Мг95-лигатура (0,1 масс.% лигатуры): Мг95+Ті49Аl2Sc, Мг95+Ті49Al2Zr, Мг95+Ті49Al2Dy

Исследование поверхности магниевых сплавов на оптическом микроскопе

Mg-Ti49Al2Sc

зёрен сплава с

чёткими

граница

Mg-Ti49Al2Dy

500µm

Механические свойства магниевых сплавов

Сплав	Предел текучести, МПа (±2,0)	Предел прочности, МПа (±4,0)	Относительное удлинение, %	Размер зерна, Мкм (±25,0)
Мг95	23	71	5,5±0,3	700 *
Мг95-TiAlSc	12	68	18±1,0	529
Мг95-TiAlDy	14	67	15±1,0	432
Mr95-TiAlZr	17	91	16±1,0	346

**Tsai*, // *J Alloys and Comp.* −2011. -*N*^o. 509

Mg-Ti49Al2Sc

Mg-Ti49Al2Zr

структура, характерная для хрупкого транскристаллитного разрушения, а также поверхностью лигатуры, усеянной множеством гексагональных включений, размером от 8 до 12 мкм

Типичная хрупкого структура ДЛЯ В объёме разрушения поверхности. сплава встречаются нерастворившиеся лигатуры TiAlZr. Части включения TiAlZr представляют собой лигатуры агломераты С рыхлые крупными частицами от 100 до 300 мкм

Структура характерна для квазихрупкого разрушения с редкими частицами лигатуры неправильной формы с размерами 50-80 мкм Введение лигатуры TiAlSc приводит к увеличению относительного удлинения до 18% при пределе прочности 68 МПа. Лигатура **TiAlZr** позволяет повысить предел прочности Мг95 до 91 МПа при значении относительного сплава удлинения 16%. Лигатура **TiAlDy** не приводит к улучшению механических свойств.

Каракчиева Наталья Ивановна,

кандидат химических наук, старший научный сотрудник НИ ТГУ, Томск

Клопотов Анатолий Анатольевич, доктор физико-математических наук, профессор

ТГАСУ, Томск

Курзина Ирина Александровна,

доктор физико-математических наук, Директор центр исследований в области материалов и технологий НИ ТГУ, Томск

Абзаев Юрий Афанасьевич,

доктор физико-математических наук, профессор

ТГАСУ, Томск

Сачков Виктор Иванович,

доктор химических наук, Заведующий Инновационнотехнологическим центром СФТИ ТГУ, г.Томск Стабильность соединений Ti-H с разным содержанием атомов Ti, H оценивалась кластерным методом с помощью программы ATAT и эволюционным кодом в USPEX.

В программах ATAT, USPEX в качестве интерфейса использовались ab initio программы Quantum Espressio и VASP.

Оценки производились при ОК, в этом случае расчеты энергии не осложнены вкладом колебательного спектра. В работе прогноз стабильных кристаллических соединений Ті-Н методом кластерного расширения на основе кубической решетки, и аналогичный прогноз в USPEX осуществляется на основе сведений об атомном содержании. В АТАТ в начальной конфигурации решетки с заданными параметрами выделяются, парные, триплетные соединения и т.д. атомов, определяемые в узлах решеток переменными занятости. Для всех конфигураций вычисляется энергия решетки. Для Ті-Н рассматривались решетки, содержание атомов Ti_xH_y в которых варьировалось в интервале x,y = (0-8) атомов. Поиск кластеров включал в себя соединения всех пространственных групп (230) указанного числа атомов. При расчетах энергии соединений в АТАТ учитывалось число эквивалентных конфигураций одинаковой симметрии, а также принадлежность атомов неэквивалентным узлам. Точность оценки соединений определялась сравнением с энергией решеток, вычисляемых кодом Quantum Espresso (QE).

Параметры решеток, объем элементарной ячейки, пространственная группа, энергия ячейки, геометрическая оптимизация элементарных ячеек вычисляли дополнительно в коде CASTEP.

Идентификация структурного состояния и количественного содержания фаз осуществлялось методом Ритвельда с помощью reflex.

Варьировалось максимально возможное количество параметров.

Фоновое излучение на дифрактограммах аппроксимировалась многочленом 20-й степени.

Полнопрофильная интегральная интенсивность эталонных фаз оценивалась самосогласованным образом.

Выбор эталонных решеток осуществлялся из кристаллографической базы данных COD.

Поскольку в COD отсутствовали соединения Ti-Al-Me (Me=Sc,Y,Dy,Ho,Er,Zr.Hf), список эталонов был дополнен предсказанными структурами, полученными в коде USPEX с интерфейсом SIESTA. В USPEX-SIESTA посредством эволюционного кода предсказываются стабильные структуры известного элементного состава, обладающие локальным, или глобальным минимумом свободной энергии (энтальпии) системы. В работе были предсказаны решетки фиксированного состава TiAl₄₉Me₂, которые использовались в дальнейшем для качественного анализа фазового состава синтезированных сплавов Ti-Al-Me.

Стабильность эталонных решеток оценивалась как в программе USPEX-SIESTA, так и CASTEP методом выпуклых оболочек на основе *on-line* pecypca [COD, OQMD].

В программе USPEX-SIESTA была создана кристаллографическая база стабильных и квазистабильных структур известного элементного состава.

Оценивали энергию смешения (*ДН*) эталонных фаз относительно нулевого уровня, который определяется движущей силой фазового разделения на стабильные интерметалиды. Расчеты производились на основе кристаллографической базы эталонов *Materials Project*.

Фазовые диаграммы тройных систем были построенные с помощью бесплатных ресурсов, предоставляемых открытой платформой MaterialsProject..